Faculty Opinions recommendation of Cargo sorting zones in the trans-Golgi network visualized by super-resolution confocal live imaging microscopy in plants.

Author(s):  
Yvon Jaillais
2014 ◽  
Vol 55 (4) ◽  
pp. 694-703 ◽  
Author(s):  
Tomohiro Uemura ◽  
Yasuyuki Suda ◽  
Takashi Ueda ◽  
Akihiko Nakano

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Yutaro Shimizu ◽  
Junpei Takagi ◽  
Emi Ito ◽  
Yoko Ito ◽  
Kazuo Ebine ◽  
...  

AbstractThe trans-Golgi network (TGN) has been known as a key platform to sort and transport proteins to their final destinations in post-Golgi membrane trafficking. However, how the TGN sorts proteins with different destinies still remains elusive. Here, we examined 3D localization and 4D dynamics of TGN-localized proteins of Arabidopsis thaliana that are involved in either secretory or vacuolar trafficking from the TGN, by a multicolor high-speed and high-resolution spinning-disk confocal microscopy approach that we developed. We demonstrate that TGN-localized proteins exhibit spatially and temporally distinct distribution. VAMP721 (R-SNARE), AP (adaptor protein complex)−1, and clathrin which are involved in secretory trafficking compose an exclusive subregion, whereas VAMP727 (R-SNARE) and AP-4 involved in vacuolar trafficking compose another subregion on the same TGN. Based on these findings, we propose that the single TGN has at least two subregions, or “zones”, responsible for distinct cargo sorting: the secretory-trafficking zone and the vacuolar-trafficking zone.


2017 ◽  
Vol 28 (26) ◽  
pp. 3870-3880 ◽  
Author(s):  
Blake H. Hummer ◽  
Noah F. de Leeuw ◽  
Christian Burns ◽  
Lan Chen ◽  
Matthew S. Joens ◽  
...  

Large dense core vesicles (LDCVs) mediate the regulated release of neuropeptides and peptide hormones. They form at the trans-Golgi network (TGN), where their soluble content aggregates to form a dense core, but the mechanisms controlling biogenesis are still not completely understood. Recent studies have implicated the peripheral membrane protein HID-1 in neuropeptide sorting and insulin secretion. Using CRISPR/Cas9, we generated HID-1 KO rat neuroendocrine cells, and we show that the absence of HID-1 results in specific defects in peptide hormone and monoamine storage and regulated secretion. Loss of HID-1 causes a reduction in the number of LDCVs and affects their morphology and biochemical properties, due to impaired cargo sorting and dense core formation. HID-1 KO cells also exhibit defects in TGN acidification together with mislocalization of the Golgi-enriched vacuolar H+-ATPase subunit isoform a2. We propose that HID-1 influences early steps in LDCV formation by controlling dense core formation at the TGN.


2009 ◽  
Vol 20 (1) ◽  
pp. 438-451 ◽  
Author(s):  
Susana B. Salvarezza ◽  
Sylvie Deborde ◽  
Ryan Schreiner ◽  
Fabien Campagne ◽  
Michael M. Kessels ◽  
...  

The functions of the actin cytoskeleton in post-Golgi trafficking are still poorly understood. Here, we report the role of LIM Kinase 1 (LIMK1) and its substrate cofilin in the trafficking of apical and basolateral proteins in Madin-Darby canine kidney cells. Our data indicate that LIMK1 and cofilin organize a specialized population of actin filaments at the Golgi complex that is selectively required for the emergence of an apical cargo route to the plasma membrane (PM). Quantitative pulse-chase live imaging experiments showed that overexpression of kinase-dead LIMK1 (LIMK1-KD), or of LIMK1 small interfering RNA, or of an activated cofilin mutant (cofilin S3A), selectively slowed down the exit from the trans-Golgi network (TGN) of the apical PM marker p75-green fluorescent protein (GFP) but did not interfere with the apical PM marker glycosyl phosphatidylinositol-YFP or the basolateral PM marker neural cell adhesion molecule-GFP. High-resolution live imaging experiments of carrier formation and release by the TGN and analysis of peri-Golgi actin dynamics using photoactivatable GFP suggest a scenario in which TGN-localized LIMK1-cofilin regulate a population of actin filaments required for dynamin-syndapin-cortactin–dependent generation and/or fission of precursors to p75 transporters.


2001 ◽  
Vol 114 (19) ◽  
pp. 3413-3418 ◽  
Author(s):  
Annette L. Boman

The GGA proteins are a novel family of proteins that were discovered nearly simultaneously by several labs studying very different aspects of membrane trafficking. Since then, several studies have described the GGA proteins and their functions in yeast and mammalian cells. Four protein domains are present in all GGA proteins, as defined by sequence homology and function. These different domains interact directly with ARF proteins, cargo and clathrin. Alteration of the levels of GGA proteins by gene knockout or overexpression affects specific trafficking events between the trans-Golgi network and endosomes. These data suggest that GGAs function as ARF-dependent, monomeric clathrin adaptors to facilitate cargo sorting and vesicle formation at the trans-Golgi network.


PLoS ONE ◽  
2021 ◽  
Vol 16 (10) ◽  
pp. e0258111
Author(s):  
Sofia Rodriguez-Gallardo ◽  
Kazuo Kurokawa ◽  
Susana Sabido-Bozo ◽  
Alejandro Cortes-Gomez ◽  
Ana Maria Perez-Linero ◽  
...  

Understanding how in eukaryotic cells thousands of proteins are sorted from each other through the secretory pathway and delivered to their correct destinations is a central issue of cell biology. We have further investigated in yeast how two distinct types of cargo proteins are sorted into different endoplasmic reticulum (ER) exit sites (ERES) for their differential ER export to the Golgi apparatus. We used an optimized protocol that combines a live cell dual-cargo ER export system with a 3D simultaneous multi-color high-resolution live cell microscopy called Super-resolution Confocal Live Imaging Microscopy (SCLIM). Here, we describe this protocol, which is based on the reversible ER retention of two de novo co-expressed cargos by blocking COPII function upon incubation of the thermo-sensitive COPII allele sec31-1 at restrictive temperature (37°C). ER export is restored by shifting down to permissive temperature (24°C) and progressive incorporation of the two different types of cargos into the fluorescently labelled ERES can be then simultaneously captured at 3D high spatial resolution by SCLIM microscopy. By using this protocol, we have shown that newly synthesized glycosylphosphatidylinositol (GPI)-anchored proteins having a very long chain ceramide lipid moiety are clustered and sorted into specialized ERES that are distinct from those used by transmembrane secretory proteins. Furthermore, we showed that the chain length of the ceramide present in the ER membrane is critical for this sorting selectivity. Therefore, thanks to the presented method we could obtain the first direct in vivo evidence for lipid chain length-based protein cargo sorting into selective ERES.


2021 ◽  
Vol 134 (23) ◽  
Author(s):  
Charlotte Ford ◽  
Anup Parchure ◽  
Julia von Blume ◽  
Christopher G. Burd

ABSTRACT The Golgi functions principally in the biogenesis and trafficking of glycoproteins and lipids. It is compartmentalized into multiple flattened adherent membrane sacs termed cisternae, which each contain a distinct repertoire of resident proteins, principally enzymes that modify newly synthesized proteins and lipids sequentially as they traffic through the stack of Golgi cisternae. Upon reaching the final compartments of the Golgi, the trans cisterna and trans-Golgi network (TGN), processed glycoproteins and lipids are packaged into coated and non-coated transport carriers derived from the trans Golgi and TGN. The cargoes of clathrin-coated vesicles are chiefly residents of endo-lysosomal organelles, while uncoated carriers ferry cargo to the cell surface. There are outstanding questions regarding the mechanisms of protein and lipid sorting within the Golgi for export to different organelles. Nonetheless, conceptual advances have begun to define the key molecular features of cargo clients and the mechanisms underlying their sorting into distinct export pathways, which we have collated in this Cell Science at a Glance article and the accompanying poster.


2012 ◽  
Vol 199 (7) ◽  
pp. 1057-1066 ◽  
Author(s):  
Julia von Blume ◽  
Anne-Marie Alleaume ◽  
Christine Kienzle ◽  
Amado Carreras-Sureda ◽  
Miguel Valverde ◽  
...  

Ca2+ import into the lumen of the trans-Golgi network (TGN) by the secretory pathway calcium ATPase1 (SPCA1) is required for the sorting of secretory cargo. How is Ca2+ retained in the lumen of the Golgi, and what is its role in cargo sorting? We show here that a soluble, lumenal Golgi resident protein, Cab45, is required for SPCA1-dependent Ca2+ import into the TGN; it binds secretory cargo in a Ca2+-dependent reaction and is required for its sorting at the TGN.


protocols.io ◽  
2021 ◽  
Author(s):  
Sofia Rodriguez-Gallardo ◽  
Kazuo Kurokawa ◽  
Susana Sabido-Bozo ◽  
Alejandro Cortes-Gomez ◽  
Ana Maria ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document