Sill intrusion into pyroxenitic mush and the development of the Lower-Upper Critical Zone boundary of the Bushveld Complex: Implications for the origin of stratiform anorthosites and chromitites in layered intrusions

Author(s):  
Reza Maghdour-Mashhour ◽  
Ben Hayes ◽  
Robert Bolhar ◽  
Henriette Ueckermann

Abstract Layered mafic-ultramafic intrusions are the fossilized remnants of magmatic plumbing systems and provide excellent natural laboratories to investigate the processes of magma differentiation and solidification. The Rustenburg Layered Suite is the plutonic mafic-ultramafic part of the Bushveld Complex of South Africa and it has traditionally been assumed to have formed from an upwardly-aggrading (and in-sequence) crystal pile in a melt-dominated chamber. In this study, we present field and petrological observations, complemented with detailed plagioclase mineral chemistry (molar An, LREE and strontium isotopes) for the first stratiform anorthosite layer (MG3F anorthosite) at the Lower-Upper Critical Zone boundary (LCZ-UCZ) in the eastern limb of the Bushveld Complex. We use these data to test the overarching paradigm of a melt-dominated chamber for the magmatic evolution of the Rustenburg Layered Suite. The MG3F anorthosite is immediately overlain by the MG3 chromitite and both are surrounded by pyroxenite. A distinctive ‘egg-box’ structure, consisting of round pyroxenite blocks mantled by chromitite, marks the LCZ-UCZ boundary, and represents an erosional disconformity at the base of the MG3F anorthosite. The MG3F anorthosite is laterally continuous for 100s km in the eastern limb. In the northern-central sector of the eastern limb, the 1.5 m thick MG3F anorthosite is characterized by non-cotectic proportions of foliated plagioclase and chromite chains that lie parallel to the foliation. The MG3F anorthosite is divisible into two sub-layers on the basis of (i) a compositional break in plagioclase molar An, LREE and strontium isotope composition and, (ii) a peak in chromite mode (up to 12 vol%). In the lower half of the layer plagioclase LREE concentrations increase upward, molar An shows a marginal decrease upward and strontium isotopes are relatively homogeneous (87Sr/86Sr2.06Ga 0.7056-0.7057). In the upper half of the layer, plagioclase LREE concentrations decrease upward, molar An shows a marginal increase upward and strontium isotopes show strong inter- and intra-grain variability (87Sr/86Sr2.06Ga 0.7053-0.7064). Strontium isotopes in interstitial plagioclase in the immediate footwall and hangingwall pyroxenites show similar 87Sr/86Sr2.06Ga values to the MG3F anorthosite and decrease with distance from the MG3F anorthosite. In the southern sector of the eastern limb, the 4 m thick MG3F anorthosite exhibits identical stratigraphic compositional trends in terms of molar An in plagioclase. We infer that the MG3F anorthosite formed by two successive sill-like injections of magma into a resident viscoplastic pyroxenitic crystal mush. An initial pulse of plagioclase-saturated melt underwent in situ fractional crystallization, manifested as upwardly decreasing molar An and upwardly increasing LREE in plagioclase in the lower half of the MG3F anorthosite. Sill intrusion caused deformation of the viscoplastic pyroxenite mush and vortices of superheated liquid generated by frictional viscous heating caused disaggregation of the footwall pyroxenitic mush. Disaggregated blocks of pyroxenitic mush reacted with the superheated liquid (a hybrid chromite-saturated melt) to produce chromite-rich rims at the base of the MG3F anorthosite (egg-box structure). A second sill-like injection of magma then entered the chamber that halted in situ crystallization. This sill was a plagioclase slurry that contained isotopically distinct plagioclase laths compared to those present in the previous sill. The upward increase in molar An of plagioclase, and decreasing LREE, may be explained by the slurry becoming more primitive in melt composition with time. The second sill also caused mush disaggregation and renewed the production of a hybrid chromite-saturated melt. Chromite crystals were then mobilized and injected as slurries at the interface between the sill and resident mush towards the back of the flow, culminating in the development of the MG3 chromitite. Our model for the development of the Lower-Upper Critical Zone boundary questions the existence of a melt-dominated chamber and it has implications for the origin of stratiform anorthosites (and chromitites) in crustal magma chambers.

2015 ◽  
Vol 56 (6) ◽  
pp. 1229-1250 ◽  
Author(s):  
Ilya V. Veksler ◽  
David L. Reid ◽  
Peter Dulski ◽  
Jakob K. Keiding ◽  
Mathias Schannor ◽  
...  

1999 ◽  
Vol 63 (6) ◽  
pp. 911-923 ◽  
Author(s):  
Tom E. McCandless ◽  
Joaquin Ruiz ◽  
B.Ivan Adair ◽  
Claire Freydier

2020 ◽  
Author(s):  
Shenghong Yang ◽  
Wolfgang D. Maier ◽  
Belinda Godel ◽  
Sarah-Jane Barnes ◽  
Eero Hanski ◽  
...  

<p>In-situ trace element analysis of cumulus minerals may provide a clue to the parental magma from which the minerals crystallized. However, this is hampered by effects of the trapped liquid shift (TLS). In the Main Zone (MZ) of the Bushveld Complex, the Ti content in plagioclase grains shows a clear increase from core to rim, whereas most other elements (e.g., rare earth elements (REEs), Zr, Hf, Pb) do not. This is different from the prominent intra-grain variation of all trace elements in silicate minerals in mafic dikes and smaller intrusion, which have a faster cooling rate. We suggest that crystal fractionation of trapped liquid occurred in the MZ of Bushveld and the TLS may have modified the original composition of the cumulus minerals for most trace elements except Ti during slow cooling. Quantitative model calculations suggest that the influence of the TLS depends on the bulk partition coefficient of the element. The effect on highly incompatible elements is clearly more prominent ­­than on moderately incompatible and compatible elements because of different concentration gradients between cores and rims of cumulate minerals. This is supported by the following observations in the MZ of Bushveld: 1) positive correlation between Cr, Ni and Mg# of clinopyroxene and orthopyroxene, 2) negative correlation between moderately incompatible elements (e.g., Mn and Sc in clinopyroxene and orthopyroxene, Sr, Ba, Eu in plagioclase), but 3) poor correlation between highly incompatible elements and Mg# of clinopyroxene and orthopyroxene or An# of plagioclase. Modeling suggests that the extent of the TLS for a trace element is also dependent on the initial fraction of the primary trapped liquid, with strong TLS occurring if the primary trapped liquid fraction is high. This is supported by the positive correlation between highly incompatible trace element abundances in cumulus minerals and whole-rock Zr contents.</p><p>We have calculated the composition of the parental magma of the MZ of the Bushveld Complex. The compatible and moderately incompatible element contents of the calculated parental liquid are generally similar to those of the B3 marginal rocks, but different from the B1 and B2 marginal rocks. For the highly incompatible elements, we suggest that the use of the sample with the lowest whole-rock Zr content and the least degree of TLS is the best approach to obtain the parental magma composition. Based on calculation, we propose that a B3 type liquid is the most likely parental magma to the MZ of the Bushveld Complex.</p>


2020 ◽  
Vol 123 (4) ◽  
pp. 573-586
Author(s):  
M. Twala ◽  
R. J. Roberts ◽  
C. Munghemezulu

Abstract Multispectral sensors, along with common and advanced algorithms, have become efficient tools for routine lithological discrimination and mineral potential mapping. It is with this paradigm in mind that this paper sought to evaluate and discuss the detection and mapping of magnetite on the Eastern Limb of the Bushveld Complex, using high spectral resolution multispectral remote sensing imagery and GIS techniques. Despite the wide distribution of magnetite, its economic importance, and its potential as an indicator of many important geological processes, not many studies had looked at the detection and exploration of magnetite using remote sensing in this region. The Maximum Likelihood and Support Vector Machine classification algorithms were assessed for their respective ability to detect and map magnetite using the PlanetScope Analytic data. A K-fold cross-validation analysis was used to measure the performance of the training as well as the test data. For each classification algorithm, a thematic landcover map was created and an error matrix, depicting the user’s and producer’s accuracies as well as kappa statistics, was derived. A pairwise comparison test of the image classification algorithms was conducted to determine whether the two classification algorithms were significantly different from each other. The Maximum Likelihood Classifier significantly outperformed the Support Vector Machine algorithm, achieving an overall classification accuracy of 84.58% and an overall kappa value of 0.79. Magnetite was accurately discriminated from the other thematic landcover classes with a user’s accuracy of 76.41% and a producer’s accuracy of 88.66%. The overall results of this study illustrated that remote sensing techniques are effective instruments for geological mapping and mineral investigation, especially iron oxide mineralization in the Eastern Limb of the Bushveld Complex.


1988 ◽  
Vol 52 (364) ◽  
pp. 81-89 ◽  
Author(s):  
R. Grant Cawthorn ◽  
Kevin L. Walsh

AbstractPhosphorus contents in cumulus rocks occurring close to the level of apatite appearance in the basic rocks of the Bushveld Complex, South Africa, provide a method of calculating the proportion of intercumulus component in these rocks. Previous experimental studies have accurately constrained the phosphorus content of magmas when apatite becomes stable. The ratio of the phosphorus content in the cumulates immediately below the appearance of apatite to this liquid composition defines the proportion of trapped liquid.Application of this method to rocks from the uppermost mafic rocks of the Bushveld Complex leads to the conclusion that there is from 1 to 6 per cent intercumulus component. Many of these rocks are multiphase cumulates and in such rocks estimation of intercumulus component from textural criteria is difficult.If crystals grow In situ on the floor of the magma chamber such small proportions of interstitial component can be produced without appealing to excessive diffusion and circulation of magma through an unconsolidated crystal pile. The geometry of the intrusion as well as its size might have a major influence on the proportion of the liquid ultimately solidifying within a cumulus rock.


Sign in / Sign up

Export Citation Format

Share Document