liquid composition
Recently Published Documents


TOTAL DOCUMENTS

160
(FIVE YEARS 38)

H-INDEX

23
(FIVE YEARS 4)

Author(s):  
Edward C. Hensel ◽  
Nathan C. Eddingsaas ◽  
Qutaiba M. Saleh ◽  
S. Jayasekera ◽  
S. Emma Sarles ◽  
...  

This study introduces and demonstrates a comprehensive, accurate, unbiased approach to robust quantitative comparison of Electronic Nicotine Delivery Systems (ENDS) appropriate for establishing substantial equivalence (or lack thereof) between tobacco products. The approach is demonstrated across a family of thirteen pen- and pod-style ENDS products. Methods employed consist of formulating a robust emissions surface regression model, quantifying the empirical accuracy of the model as applied to each product, evaluating relationships between product design characteristics and maximum emissions characteristics, and presenting results in formats useful to researchers, regulators, and consumers. Results provide a response surface to characterize emissions (total particulate matter and constituents thereof) from each ENDS appropriate for use in a computer model and for conducting quantitative exposure comparisons between products. Results demonstrate that emissions vary as a function of puff duration, flow rate, E-Liquid composition, and device operating power. Further, results indicate that regulating design characteristics of ENDS devices and consumables may not achieve desired public health outcomes; it is more effective to regulate maximum permissible emissions directly. Three emissions outcome measures (yield per puff, mass concentration and constituent mass ratio) are recommended for adoption as standard quantities for reporting by manufacturers and research laboratories. The approach provides a means of (a) quantifying and comparing maximal emissions from ENDS products spanning their entire operating envelope, (b) comparative evaluation of ENDS devices and consumable design characteristics, and (c) establishing comparative equivalence of maximal emissions from ENDS. A consumer-oriented product emissions dashboard is proposed for comparative evaluation of ENDS exposure potential. Maximum achievable power dissipated in the coil of ENDS is identified as a potentially effective regulatory parameter.


2021 ◽  
Author(s):  
Taha Okasha ◽  
Mohammed Al Hamad ◽  
Bastian Sauerer ◽  
Wael Abdallah

Abstract Current reservoir simulators use interfacial tension (IFT) values derived from dead oil measurements at ambient conditions or predicted from literature correlations. IFT is highly dependent on temperature, pressure and fluid composition. Therefore, knowledge of the IFT value at reservoir conditions is essential for accurate reservoir fluid characterization. This study compares IFT values from dead and live oil measurements and the results of literature predicted values, thereby clearly showing the weakness of existing correlations when trying to predict crude oil IFT. A total of ten live oils was sampled for this study. Using the pendent drop technique, IFT was measured for each oil at different conditions: in the under-saturated region at reservoir pressure and temperature, in the saturated region at reservoir temperature, and for dead oil at ambient conditions. Basic PVT properties such as gas to oil ratio (GOR), gas and liquid composition, density, viscosity and molecular weight were also measured. The bubble point for each oil was identified to define the pressure step in the saturated region for extra IFT measurement. The equilibrium IFT values for the live oils were generally higher than for the corresponding dead oils. For oils where this general trend was not observed, contaminations were found in the crude samples. The use of current literature correlations does not allow to predict correct reservoir IFT. Therefore, this study provides accurate live IFT values for a variety of reservoir fluids and conditions in combination with live oil properties, highly beneficial to reservoir engineers, allowing better oil production planning.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Bulat Munavirov ◽  
Jeffrey J. Black ◽  
Faiz Ullah Shah ◽  
Johan Leckner ◽  
Mark W. Rutland ◽  
...  

AbstractPhosphonium ionic liquids with orthoborate anions have been studied in terms of their interfacial film formation, both physisorbed and sacrificial from chemical breakdown, in sheared contacts of varying harshness. The halogen-free anion architecture was varied through (i) the heteronuclear ring size, (ii) the hybridisation of the constituent atoms, and (iii) the addition of aryl functionalities. Time of Flight-Secondary Ion Mass Spectrometry analysis revealed the extent of sacrificial tribofilm formation allowing the relative stability of the ionic liquids under tribological conditions to be determined and their breakdown mechanisms to be compared to simple thermal decomposition. Overall, ionic liquids outperformed reference oils as lubricants; in some cases, sacrificial films were formed (with anion breakdown a necessary precursor to phosphonium cation decomposition) while in other cases, a protective, self-assembly lubricant layer or hybrid film was formed. The salicylate-based anion was the most chemically stable and decomposed only slightly even under the harshest conditions. It was further found that surface topography influenced the degree of breakdown through enhanced material transport and replenishment. This work thus unveils the relationship between ionic liquid composition and structure, and the ensuing inter- and intra-molecular interactions and chemical stability, and demonstrates the intrinsic tuneability of an ionic liquid lubrication technology.


2021 ◽  
Author(s):  
◽  
Emmanuel Zikhonjwa

The performance of Ni/HZSM-5, HZSM-5, and without a catalyst have been investigated for the hydrogen pressure range of 10-40bar hydrocracking of coconut oil in a packed-bed tubular reactor between 300-450°C. This study concentrates on the effect of the operating parameters (reaction pressure, type of catalyst and reaction temperature) on the yield of transportation fuel carbon range (C5-C22) using the One-Variable-At-A-Time approach. The objectives of this study are to evaluate the effect of process conditions which includes: temperature, pressure, and presence of a catalyst, and to compare the activity of Ni/HZSM-5, HZSM-5 and without catalysts. All tested catalysts were effective in attaining biofuel range in the liquid product. The highest yield and performance of gasoline liquid composition 83.03% was obtained from the reaction pressure at constant temperature of 450 ͦC in 40bar where HZSM-5 catalysts was used, the yield of gasoline liquid composition 82.25% was also produced at constant pressure of 40 bar in 300 ͦC where promoted catalyst(Ni/HZSM-5) was used. Hydrocracking coconut oil under Ni/HZSM-5 catalysts produced the highest yield of jet fuel liquid compositions 78.73% at constant temperature 300°C, and pressure of 10 bar, this was due to less coke that was formed within a reactor and less temperature of 300°C. The highest yield of jet fuel liquid composition 75.67% was also produced at constant pressure of 10 bar at muximum temperature of 450 ͦ C, this was also due to less coke that was formed within a reactor where HZSM-5 was used because of less pressure applied. For the highest yield of diesel liquid composition 24.04%, constant temperature at 400 ͦC of 20 bar where Ni/HZSM-5 was used in figure:5-9 and the highest yield of diesel liquid composition 25.15% was also produced at constant pressure of 20 bar in 450 ͦC where HZSM-5 was used. X-Ray Diffraction (XRD), Scanning Electron Microscope (SEM) coupled with Energy- dispersive X-ray spectroscopy (EDS) analyses were employed for catalyst characterization. XRD patterns confirm the success of metal doping on ZSM-5. Major peaks at 9.1° and 22.9° corresponding to ZSM-5 crystals were observed in ZSM-5. Impregnation with metals reduced the crystallinity of ZSM-5 supported catalysts.


2021 ◽  
Author(s):  
Bulat Munavirov ◽  
Jeffrey J. Black ◽  
Faiz Ullah Shah ◽  
Johan Leckner ◽  
Mark W. Rutland ◽  
...  

Abstract Phosphonium ionic liquids with orthoborate anions have been studied in terms of their interfacial film formation, both physisorbed and sacrificial from chemical breakdown, in sheared contacts of varying harshness. The halogen-free anion architecture was varied through i) the heteronuclear ring size, ii) the hybridisation of the constituent atoms, and iii) the addition of aryl functionalities. ToF-SIMS analysis revealed the extent of sacrificial tribofilm formation allowing the relative stability of the ionic liquids under tribological conditions to be determined and their breakdown mechanisms to be compared to simple thermal decomposition. Overall, ionic liquids outperformed reference oils as lubricants; in some cases, sacrificial films were formed (with anion breakdown a necessary precursor to phosphonium cation decomposition) while in other cases, a protective, self-assembly lubricant layer or hybrid film was formed. The salicylate-based anion was the most chemically stable and decomposed only slightly even under the harshest conditions. It was further found that surface topography influenced the degree of breakdown through enhanced material transport and replenishment. This work thus unveils the relationship between ionic liquid composition and structure, and the ensuing inter- and intra-molecular interactions and chemical stability, and demonstrates the intrinsic tuneability of an ionic liquid lubrication technology.


Author(s):  
Neeraj Kumar ◽  
Balraj Saini ◽  
Rajwinder Kaur

The development of biocompatible ionic liquids is needed in order to explore their vastly underutilized pharmaceutical potential. US10912834 patent discloses ionic liquids comprising macromolecular biological anions and alkylated cations, which provides enhanced dermal delivery and cell internalization of the large biological anions. The studies of ex vivo permeation through excised pig skin indicated significantly higher skin penetration of percent dose and enhanced drug internalization was achieved using these ionic liquids. Although, the patent advances an infant field of biological macromolecule-based ionic liquids, the evaluation of these claimed ionic liquids relies only on the in vivo cytotoxicity data and ex vivo skin permeation behavior. Exhaustive studies, including dermatokinetic evaluation and long-term animal toxicity experiments, should be performed in order to unravel the potential of the aforementioned ionic liquids.


Author(s):  
Mahshid Nategh ◽  
Hojjat Mahdiyar ◽  
M. Reza Malayeri ◽  
Simon Unz ◽  
Michael Beckmann

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Yihan Gao ◽  
Dian Li ◽  
Jiexiong Ru ◽  
Muyun Yang ◽  
Lehua Lu ◽  
...  

AbstractA mathematical model based on heat and mass transfer processes in the porous wick of electronic cigarettes was established to describe the atomization of e-liquids according to max liquid temperature, vaporization rate and thermal efficiency in a single puff. Dominant capillary-evaporation effects were defined in the model to account for the effects of electrical power, e-liquid composition and porosity of the wick material on atomization and energy transmission processes. Liquid temperature, vaporization rate, and thermal efficiency were predicted using the mathematical model in 64 groups, varying with electrical power, e-liquid composition and wick porosity. Experimental studies were carried out using a scaled-model test bench to validate the model’s prediction. A higher PG/VG ratio in the e-liquid promoted energy transfer for vaporization, and the e-liquid temperature was comparatively reduced at a relatively high power, which was helpful to avoid atomizer overheating. Compared with the other factors, wick porosity affected the thermal efficiency more significantly. The vaporization rate increased with a higher wick porosity in a certain range. The modelling results suggested that a greater wick porosity and a higher PG ratio in e-liquids helped to improve the overall thermal efficiency.


2021 ◽  
pp. tobaccocontrol-2020-056362
Author(s):  
Soha Talih ◽  
Rola Salman ◽  
Eric Soule ◽  
Rachel El-Hage ◽  
Ebrahim Karam ◽  
...  

IntroductionUse of flavoured pod-mod-like disposable electronic cigarettes (e-cigarettes) has grown rapidly, particularly among cost-sensitive youth and young adults. To date, little is known about their design characteristics and toxicant emissions. In this study, we analysed the electrical and chemical characteristics and nicotine and pulmonary toxicant emission profiles of five commonly available flavoured disposable e-cigarettes and compared these data with those of a JUUL, a cartridge-based e-cigarette device that pod-mod-like disposables emulate in size and shape.MethodsDevice construction, electrical power and liquid composition were determined. Machine-generated aerosol emissions including particulate matter, nicotine, carbonyl compounds and heavy metals were also measured. Liquid and aerosol composition were measured by high-performance liquid chromatography, gas chromatography-mass spectrometry/flame ionisation detection, and inductively coupled plasma mass spectrometry.ResultsWe found that unlike JUUL, disposable devices did not incorporate a microcontroller to regulate electrical power to the heating coil. Quality of construction varied widely. Disposable e-cigarette power ranged between 5 and 9 W and liquid nicotine concentration ranged between 53 and 85 mg/mL (~95% in the protonated form). In 15 puffs, total nicotine yield for the disposables ranged between 1.6 and 6.7 mg, total carbonyls ranged between 28 and 138 µg, and total metals ranged between 1084 and 5804 ng. JUUL emissions were near the floors of all of these ranges.ConclusionsDisposable e-cigarettes are designed with high nicotine concentration liquids and are capable of emitting much higher nicotine and carbonyl species relative to rechargeable look-alike e-cigarettes. These differences are likely due to the lower quality in construction, unreliable labelling and lack of temperature control regulation that limits the power during operation. From a public health perspective, regulating these devices is important to limit user exposure to carbonyls and nicotine, particularly because these devices are popular with youth and young adults.


Sign in / Sign up

Export Citation Format

Share Document