scholarly journals Fine-scale zooplankton vertical distribution in relation to hydrographic and optical characteristics of the surface waters on the Arctic shelf

2014 ◽  
Vol 37 (1) ◽  
pp. 120-133 ◽  
Author(s):  
Emilia Trudnowska ◽  
Slawomir Sagan ◽  
Slawomir Kwasniewski ◽  
Miroslaw Darecki ◽  
Katarzyna Blachowiak-Samolyk
2002 ◽  
Vol 60 (1-2) ◽  
pp. 73-89 ◽  
Author(s):  
L. León Vintró ◽  
C.A. McMahon ◽  
P.I. Mitchell ◽  
D. Josefsson ◽  
E. Holm ◽  
...  

2015 ◽  
Vol 42 (9) ◽  
pp. 3442-3449 ◽  
Author(s):  
Achim Randelhoff ◽  
Arild Sundfjord ◽  
Marit Reigstad

Author(s):  
M.A. Magomedgadzhieva ◽  
◽  
G.S. Oganov ◽  
I.B. Mitrofanov ◽  
A.M. Karpov ◽  
...  

Tellus B ◽  
2011 ◽  
Vol 63 (1) ◽  
Author(s):  
Abhay Devasthale ◽  
Michael Tjernström ◽  
Karl-Göran Karlsson ◽  
Manu Anna Thomas ◽  
Colin Jones ◽  
...  

Author(s):  
Evgeniy Yakushev ◽  
Anna Gebruk ◽  
Alexander Osadchiev ◽  
Svetlana Pakhomova ◽  
Amy Lusher ◽  
...  

AbstractPlastic pollution is globally recognised as a threat to marine ecosystems, habitats, and wildlife, and it has now reached remote locations such as the Arctic Ocean. Nevertheless, the distribution of microplastics in the Eurasian Arctic is particularly underreported. Here we present analyses of 60 subsurface pump water samples and 48 surface neuston net samples from the Eurasian Arctic with the goal to quantify and classify microplastics in relation to oceanographic conditions. In our study area, we found on average 0.004 items of microplastics per m3 in the surface samples, and 0.8 items per m3 in the subsurface samples. Microplastic characteristics differ significantly between Atlantic surface water, Polar surface water and discharge plumes of the Great Siberian Rivers, allowing identification of two sources of microplastic pollution (p < 0.05 for surface area, morphology, and polymer types). The highest weight concentration of microplastics was observed within surface waters of Atlantic origin. Siberian river discharge was identified as the second largest source. We conclude that these water masses govern the distribution of microplastics in the Eurasian Arctic. The microplastics properties (i.e. abundance, polymer type, size, weight concentrations) can be used for identification of the water masses.


2021 ◽  
Author(s):  
Jesse R. Farmer ◽  
Daniel M. Sigman ◽  
Julie Granger ◽  
Ona M. Underwood ◽  
François Fripiat ◽  
...  

AbstractSalinity-driven density stratification of the upper Arctic Ocean isolates sea-ice cover and cold, nutrient-poor surface waters from underlying warmer, nutrient-rich waters. Recently, stratification has strengthened in the western Arctic but has weakened in the eastern Arctic; it is unknown if these trends will continue. Here we present foraminifera-bound nitrogen isotopes from Arctic Ocean sediments since 35,000 years ago to reconstruct past changes in nutrient sources and the degree of nutrient consumption in surface waters, the latter reflecting stratification. During the last ice age and early deglaciation, the Arctic was dominated by Atlantic-sourced nitrate and incomplete nitrate consumption, indicating weaker stratification. Starting at 11,000 years ago in the western Arctic, there is a clear isotopic signal of Pacific-sourced nitrate and complete nitrate consumption associated with the flooding of the Bering Strait. These changes reveal that the strong stratification of the western Arctic relies on low-salinity inflow through the Bering Strait. In the central Arctic, nitrate consumption was complete during the early Holocene, then declined after 5,000 years ago as summer insolation decreased. This sequence suggests that precipitation and riverine freshwater fluxes control the stratification of the central Arctic Ocean. Based on these findings, ongoing warming will cause strong stratification to expand into the central Arctic, slowing the nutrient supply to surface waters and thus limiting future phytoplankton productivity.


Sign in / Sign up

Export Citation Format

Share Document