scholarly journals Improved pion mean fields and masses of singly heavy baryons

2020 ◽  
Vol 2020 (4) ◽  
Author(s):  
June-Young Kim ◽  
Hyun-Chul Kim

Abstract A singly heavy baryon can be viewed as $N_c-1$ ($N_c$ being the number of colors) light valence quarks bound by the pion mean fields that are created by the presence of the $N_c-1$ valence quarks self-consistently, while the heavy quark inside a singly heavy baryon is regarded as a static color source. We investigate how the pion mean fields are created by the presence of $N_c$, $N_c-1$, and $N_c-2$ light valence quarks, which correspond to the systems of light baryons, singly heavy baryons, and doubly heavy baryons. As the number of colors decreases from $N_c$ to $N_c-1$, the pion mean fields undergo changes. As a result, the valence quark contributions to the moments of inertia of the soliton become larger than for $N_c$ valence quarks, whereas the sea quark contributions decrease systematically. On the other hand, the presence of the $N_c-2$ valence quarks is not enough to produce the strong pion mean fields, which leads to the classical soliton not being formed. This indicates that the pion mean-field approach is not suitable to describe doubly heavy baryons. We show that the mass spectra of the singly heavy baryons are better described by the improved pion mean fields, compared with the previous work in which the pion mean fields are assumed to be intact with $N_c$ varied.

1998 ◽  
Vol 13 (07) ◽  
pp. 1091-1113 ◽  
Author(s):  
DIETMAR EBERT ◽  
THORSTEN FELDMANN ◽  
CHRISTIANE KETTNER ◽  
HUGO REINHARDT

We describe heavy baryons as bound states of a quark and a diquark. For this purpose we derive the Faddeev equation for baryons containing a single heavy quark from a Nambu–Jona–Lasinio type of model which is appropriately extended to include also heavy quarks. The latter are treated in the heavy mass limit. The heavy baryon Faddeev equation is then solved using a static approximation for the exchanged quark.


2012 ◽  
Vol 27 (27) ◽  
pp. 1250153 ◽  
Author(s):  
B. EAKINS ◽  
W. ROBERTS

The heavy diquark symmetry (HDS) of doubly heavy baryons (DHBs) provides new insights into the spectroscopy of these hadrons. We derive the consequences of this symmetry for the mass spectra and the decay widths of DHBs. We compare these symmetry constraints to results from a nonrelativistic quark model for the mass spectra and results from the 3P0 model for strong decays. The quark model we implement was not constructed with these symmetries and contains interactions which explicitly break HDS. Nevertheless these symmetries emerge. We argue that the 3P0 model and any other model for strong transitions which employs a spectator assumption explicitly respects HDS. We also explore the possibility of treating the strange quark as a heavy quark and apply these ideas to Ξ, Ξc and Ξb baryons.


2015 ◽  
Vol 12 (1) ◽  
pp. 3910-3918 ◽  
Author(s):  
Dr Remon M Zaki ◽  
Prof Adel M. Kamal El-Dean ◽  
Dr Nermin A Marzouk ◽  
Prof Jehan A Micky ◽  
Mrs Rasha H Ahmed

 Incorporating selenium metal bonded to the pyridine nucleus was achieved by the reaction of selenium metal with 2-chloropyridine carbonitrile 1 in the presence of sodium borohydride as reducing agent. The resulting non isolated selanyl sodium salt was subjected to react with various α-halogenated carbonyl compounds to afford the selenyl pyridine derivatives 3a-f  which compounds 3a-d underwent Thorpe-Ziegler cyclization to give 1-amino-2-substitutedselenolo[2,3-b]pyridine compounds 4a-d, while the other compounds 3e,f failed to be cyclized. Basic hydrolysis of amino selenolo[2,3-b]pyridine carboxylate 4a followed by decarboxylation furnished the corresponding amino selenolopyridine compound 6 which was used as a versatile precursor for synthesis of other heterocyclic compound 7-16. All the newly synthesized compounds were established by elemental and spectral analysis (IR, 1H NMR) in addition to mass spectra for some of them hoping these compounds afforded high biological activity.


2021 ◽  
pp. 168526
Author(s):  
Martin Puschmann ◽  
João C. Getelina ◽  
José A. Hoyos ◽  
Thomas Vojta

Author(s):  
Jun-Sik Sin

In this paper, we investigate the consequences of ion association, coupled with the considerations of finite size effects and orientational ordering of Bjerrum pairs as well as ions and water...


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Igor N. Karnaukhov

AbstractUsing mean field approach, we provide analytical and numerical solution of the symmetric Anderson lattice for arbitrary dimension at half filling. The symmetric Anderson lattice is equivalent to the Kondo lattice, which makes it possible to study the behavior of an electron liquid in the Kondo lattice. We have shown that, due to hybridization (through an effective field due to localized electrons) of electrons with different spins and momenta $$\mathbf{k} $$ k and $$\mathbf{k} +\overrightarrow{\pi }$$ k + π → , the gap in the electron spectrum opens at half filling. Such hybridization breaks the conservation of the total magnetic momentum of electrons, the spontaneous symmetry is broken. The state of electron liquid is characterized by a large Fermi surface. A gap in the spectrum is calculated depending on the magnitude of the on-site Coulomb repulsion and value of s–d hybridization for the chain, as well as for square and cubic lattices. Anomalous behavior of the heat capacity at low temperatures in the gapped state, which is realized in the symmetric Anderson lattice, was also found.


2015 ◽  
Vol 91 (5) ◽  
Author(s):  
S. Ayik ◽  
O. Yilmaz ◽  
B. Yilmaz ◽  
A. S. Umar ◽  
A. Gokalp ◽  
...  
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document