scholarly journals The Taiji program: A concise overview

Author(s):  
Ziren Luo ◽  
Yan Wang ◽  
Yueliang Wu ◽  
Wenrui Hu ◽  
Gang Jin

Abstract Taiji is a Chinese space mission to detect gravitational waves in the frequency band 0.1 mHz to 1.0 Hz, which aims at detecting super (intermediate) mass black hole mergers and extreme (intermediate) mass ratio in-spirals. A brief introduction of its mission overview, scientific objectives, and payload design is presented. A roadmap is also given in which the launching time is set to the 2030s.

2018 ◽  
Vol 168 ◽  
pp. 01004 ◽  
Author(s):  
Wei-Tou Ni

After first reviewing the gravitational wave (GW) spectral classification. we discuss the sensitivities of GW detection in space aimed at low frequency band (100 nHz–100 mHz) and middle frequency band (100 mHz–10 Hz). The science goals are to detect GWs from (i) Supermassive Black Holes; (ii) Extreme-Mass-Ratio Black Hole Inspirals; (iii) Intermediate-Mass Black Holes; (iv) Galactic Compact Binaries; (v) Stellar-Size Black Hole Binaries; and (vi) Relic GW Background. The detector proposals have arm length ranging from 100 km to 1.35×109 km (9 AU) including (a) Solar orbiting detectors and (b) Earth orbiting detectors. We discuss especially the sensitivities in the frequency band 0.1-10 μHz and the middle frequency band (0.1 Hz–10 Hz). We propose and discuss AMIGO as an Astrodynamical Middlefrequency Interferometric GW Observatory.


2007 ◽  
Vol 99 (20) ◽  
Author(s):  
Duncan A. Brown ◽  
Jeandrew Brink ◽  
Hua Fang ◽  
Jonathan R. Gair ◽  
Chao Li ◽  
...  

2018 ◽  
Vol 856 (2) ◽  
pp. 92 ◽  
Author(s):  
Giacomo Fragione ◽  
Idan Ginsburg ◽  
Bence Kocsis

2007 ◽  
Vol 16 (12a) ◽  
pp. 2319-2324 ◽  
Author(s):  
JAMES GRABER

LISA may make it possible to test the black-hole uniqueness theorems of general relativity, also called the no-hair theorems, by Ryan's method of detecting the quadrupole moment of a black hole using high-mass-ratio inspirals. This test can be performed more robustly by observing inspirals in earlier stages, where the simplifications used in making inspiral predictions by the perturbative and post-Newtonian methods are more nearly correct. Current concepts for future missions such as DECIGO and BBO would allow even more stringent tests by this same method. Recently discovered evidence supports the existence of intermediate-mass black holes (IMBHs). Inspirals of binary systems with one IMBH and one stellar-mass black hole would fall into the frequency band of proposed maximum sensitivity for DECIGO and BBO. This would enable us to perform the Ryan test more precisely and more robustly. We explain why tests based on observations earlier in the inspiral are more robust and provide preliminary estimates of possible optimal future observations.


Leonardo ◽  
2016 ◽  
Vol 49 (1) ◽  
pp. 19-24 ◽  
Author(s):  
Sara Mast ◽  
Jessica Jellison ◽  
Christopher O’Leary ◽  
Jason Bolte ◽  
Cindy Stillwell ◽  
...  

Black (W)hole is an immersive art installation created collaboratively by artists and scientists utilizing data visualization of an extreme mass ratio inspiral (EMRI) and the sonification of its emitted gravitational waves in an experiential work of “artscience” and science education. The sensory-rich environment of the installation engages mind and body, expanding and enriching the participant’s capacity to imagine and wonder about the beauty and meaning of this highly abstract astronomical object, the black hole. The work investigates both historical and current gravitational wave astronomy, illustrating our 21st-century understanding of the cosmos.


2010 ◽  
Vol 104 (21) ◽  
Author(s):  
Carlos O. Lousto ◽  
Hiroyuki Nakano ◽  
Yosef Zlochower ◽  
Manuela Campanelli

2016 ◽  
Vol 25 (14) ◽  
pp. 1630001 ◽  
Author(s):  
Wei-Tou Ni

Gravitational Wave (GW) detection in space is aimed at low frequency band (100[Formula: see text]nHz–100[Formula: see text]mHz) and middle frequency band (100[Formula: see text]mHz–10[Formula: see text]Hz). The science goals are the detection of GWs from (i) Supermassive Black Holes; (ii) Extreme-Mass-Ratio Black Hole Inspirals; (iii) Intermediate-Mass Black Holes; (iv) Galactic Compact Binaries and (v) Relic GW Background. In this paper, we present an overview on the sensitivity, orbit design, basic orbit configuration, angular resolution, orbit optimization, deployment, time-delay interferometry (TDI) and payload concept of the current proposed GW detectors in space under study. The detector proposals under study have arm length ranging from 1000[Formula: see text]km to [Formula: see text][Formula: see text]km (8.6[Formula: see text]AU) including (a) Solar orbiting detectors — (ASTROD Astrodynamical Space Test of Relativity using Optical Devices (ASTROD-GW) optimized for GW detection), Big Bang Observer (BBO), DECi-hertz Interferometer GW Observatory (DECIGO), evolved LISA (e-LISA), Laser Interferometer Space Antenna (LISA), other LISA-type detectors such as ALIA, TAIJI etc. (in Earthlike solar orbits), and Super-ASTROD (in Jupiterlike solar orbits); and (b) Earth orbiting detectors — ASTROD-EM/LAGRANGE, GADFLI/GEOGRAWI/g-LISA, OMEGA and TIANQIN.


Sign in / Sign up

Export Citation Format

Share Document