scholarly journals The use of complex integral representations for analytical evaluation of three-dimensional BEM integrals--potential and elasticity problems

2014 ◽  
Vol 67 (3) ◽  
pp. 505-523 ◽  
Author(s):  
S. G. Mogilevskaya ◽  
D. V. Nikolskiy
1949 ◽  
Vol 2 (4) ◽  
pp. 469
Author(s):  
W Freiberger ◽  
RCT Smith

In this paper we discuss the flexure of an incomplete tore in the plane of its circular centre-line. We reduce the problem to the determination of two harmonic functions, subject to boundary conditions on the surface of the tore which involve the first two derivatives of the functions. We point out the relation of this solution to the general solution of three-dimensional elasticity problems. The special case of a narrow rectangular cross-section is solved exactly in Appendix II.


1996 ◽  
Vol 63 (2) ◽  
pp. 278-286 ◽  
Author(s):  
A. Nagarajan ◽  
S. Mukherjee ◽  
E. Lutz

This paper presents a novel variant of the boundary element method, here called the boundary contour method, applied to three-dimensional problems of linear elasticity. In this work, the surface integrals on boundary elements of the usual boundary element method are transformed, through an application of Stokes’ theorem, into line integrals on the bounding contours of these elements. Thus, in this formulation, only line integrals have to be numerically evaluated for three-dimensional elasticity problems—even for curved surface elements of arbitrary shape. Numerical results are presented for some three-dimensional problems, and these are compared against analytical solutions.


Author(s):  
Jun-ichi Note

Several methods use the Fourier transform from momentum space to twistor space to analyze scattering amplitudes in Yang–Mills theory. However, the transform has not been defined as a concrete complex integral when the twistor space is a three-dimensional complex projective space. To the best of our knowledge, this is the first study to define it as well as its inverse in terms of a concrete complex integral. In addition, our study is the first to show that the Fourier transform is an isomorphism from the zeroth Čech cohomology group to the first one. Moreover, the well-known twistor operator representations in twistor theory literature are shown to be valid for the Fourier transform and its inverse transform. Finally, we identify functions over which the application of the operators is closed.


Author(s):  
T. T. C. Ting

In this chapter we study Stroh's sextic formalism for two-dimensional deformations of an anisotropic elastic body. The Stroh formalism can be traced to the work of Eshelby, Read, and Shockley (1953). We therefore present the latter first. Not all results presented in this chapter are due to Stroh (1958, 1962). Nevertheless we name the sextic formalism after Stroh because he laid the foundations for researchers who followed him. The derivation of Stroh's formalism is rather simple and straightforward. The general solution resembles that obtained by the Lekhnitskii formalism. However, the resemblance between the two formalisms stops there. As we will see in the rest of the book, the Stroh formalism is indeed mathematically elegant and technically powerful in solving two-dimensional anisotropic elasticity problems. The possibility of extending the formalism to three-dimensional deformations is explored in Chapter 15.


Sign in / Sign up

Export Citation Format

Share Document