scholarly journals Alternating Strain Regimes for Failure Propagation in Flexural Systems

2019 ◽  
Vol 72 (3) ◽  
pp. 305-339 ◽  
Author(s):  
M Garau ◽  
M J Nieves ◽  
I S Jones

Summary We consider both analytical and numerical studies of a steady-state fracture process inside a discrete mass-beam structure, composed of periodically placed masses connected by Euler–Bernoulli beams. A fault inside the structure is assumed to propagate with a constant speed and this occurs as a result of the action of a remote sinusoidal, mechanical load. The established regime of fracture corresponds to the case of an alternating generalised strain regime. The model is reduced to a Wiener–Hopf equation and its solution is presented. We determine the minimum feeding wave energy required for the steady-state fracture process to occur. In addition, we identify the dynamic features of the structure during the steady-state fracture regime. A transient analysis of this problem is also presented, where the existence of steady-state fracture regimes, revealed by the analytical model, are verified and the associated transient features of this process are discussed.

1990 ◽  
Vol 216 ◽  
pp. 255-284 ◽  
Author(s):  
C. J. Lee ◽  
H. K. Cheng

Global interaction of the boundary layer separating from an obstacle with resulting open/closed wakes is studied for a thin airfoil in a steady flow. Replacing the Kutta condition of the classical theory is the breakaway criterion of the laminar triple-deck interaction (Sychev 1972; Smith 1977), which, together with the assumption of a uniform wake/eddy pressure, leads to a nonlinear equation system for the breakaway location and wake shape. The solutions depend on a Reynolds numberReand an airfoil thickness ratio or incidence τ and, in the domain$Re^{\frac{1}{16}}\tau = O(1)$considered, the separation locations are found to be far removed from the classical Brillouin–Villat point for the breakaway from a smooth shape. Bifurcations of the steady-state solution are found among examples of symmetrical and asymmetrical flows, allowing open and closed wakes, as well as symmetry breaking in an otherwise symmetrical flow. Accordingly, the influence of thickness and incidence, as well as Reynolds number is critical in the vicinity of branch points and cut-off points where steady-state solutions can/must change branches/types. The study suggests a correspondence of this bifurcation feature with the lift hysteresis and other aerodynamic anomalies observed from wind-tunnel and numerical studies in subcritical and high-subcriticalReflows.


1985 ◽  
Vol 50 ◽  
Author(s):  
J-E. Andersson ◽  
O. Persson

AbstractThe results from a large number of single-hole packer tests in crystalline rock from three test sites in Sweden have been analysed statistically. Average hydraulic conductivity values for 25 m long test intervals along boreholes with a maximal length of about 700 m are used in this study. A comparison between steady state and transient analysis of the same test data has been performed.The mean vaule of the hydraulic conductivity determined from steady state analysis was found to be about two to three times higher compared to transient analysis. However, in some cases the steady state analysis resulted in 10 to 20 times higher values compared to the transient analysis. Such divergence between the two analysis methods may be caused by deviations from the assumed flow pattern, borehole skin effects and influence of hydraulic boundaries.


2021 ◽  
pp. 1-23
Author(s):  
Daniel O'Reilly ◽  
Manouchehr Haghighi ◽  
Mohammad Sayyafzadeh ◽  
Matthew Flett

Summary An approach to the analysis of production data from waterflooded oil fields is proposed in this paper. The method builds on the established techniques of rate-transient analysis (RTA) and extends the analysis period to include the transient- and steady-state effects caused by a water-injection well. This includes the initial rate transient during primary production, the depletion period of boundary-dominated flow (BDF), a transient period after injection starts and diffuses across the reservoir, and the steady-state production that follows. RTA will be applied to immiscible displacement using a graph that can be used to ascertain reservoir properties and evaluate performance aspects of the waterflood. The developed solutions can also be used for accurate and rapid forecasting of all production transience and boundary-dominated behavior at all stages of field life. Rigorous solutions are derived for the transient unit mobility displacement of a reservoir fluid, and for both constant-rate-injection and constant-pressure-injection after a period of reservoir depletion. A simple treatment of two-phase flow is given to extend this to the water/oil-displacement problem. The solutions are analytical and are validated using reservoir simulation and applied to field cases. Individual wells or total fields can be studied with this technique; several examples of both will be given. Practical cases are given for use of the new theory. The equations can be applied to production-data interpretation, production forecasting, injection-water allocation, and for the diagnosis of waterflood-performanceproblems. Correction Note: The y-axis of Fig. 8d was corrected to "Dimensionless Decline Rate Integral, qDdi". No other content was changed.


1996 ◽  
Vol 40 (01) ◽  
pp. 46-59 ◽  
Author(s):  
K. J. Spyrou

The dynamic stability of ships encountering large regular waves from astern is analyzed, with focus on delineating the specific conditions leading to the uncontrolled turn identified as broaching. The problem's formulation takes into account motions of the actively steered or controls-fixed vessel in surge-sway-yaw-roll with consideration of Froude-Krylov and diffraction wave excitation. Dynamical analysis of surf-riding is carried out for the general case of quartering waves, exploring the route periodic motions—surf riding, loss of stationary stability, turn, capsize. Steady-state and transient analysis is carried out in the system's multidimensional state-space in order to identify all existing limit sets and locate attracting domains. Broaching from periodic motions is also a part of the investigation.


Author(s):  
Zhao Yin ◽  
Hangduo Gao ◽  
Gao Lin

Based on the two-dimensional (2D) elastic theory without enforcing any beam assumption, an efficient semi-analytical scaled boundary finite element method (SBFEM) is proposed to solve the bending and free vibration responses of composite laminated and sandwich beams under the mechanical load. The scaled center is placed at infinity, which produces the accurate result by discretizing only the longitudinal direction of the beam structure treated as a one-dimensional (1D) discretization problem. A new kind of 1D high-order spectral element shape functions with the advantages of high accuracy and superior convergence is introduced in SBFEM coordinate system to approximate the geometric model and corresponding variables. The principle of weighted residual in conjunction with the Green’s theorem are applied to obtain the SBFEM governing equation of each layer with respect to radial displacement fields. The solution of equation is indicated analytically by a matrix exponential function, which can be accurately solved by using the precise integration technique (PIT). Finally, an effective and simple stiffness matrix is obtained. By comparing two examples with the solutions based on the finite element method (FEM), the results show that the proposed method has good accuracy and rapid convergence with only a few meshes. The numerical examples are given to investigate the parametric effects of the stacking sequence, thickness ratio, boundary condition, and load form on the variation of the displacement, stress and natural frequency. The results validate that the present technique is also applicable to the complex beam structure with softcore layer inside.


2008 ◽  
Vol 613 ◽  
pp. 171-203 ◽  
Author(s):  
MARKO KLEINE BERKENBUSCH ◽  
ITAI COHEN ◽  
WENDY W. ZHANG

This paper presents a numerical analysis of the transition from selective withdrawal to viscous entrainment. In our model problem, an interface between two immiscible layers of equal viscosity is deformed by an axisymmetric withdrawal flow, which is driven by a point sink located some distance above the interface in the upper layer. We find that steady-state hump solutions, corresponding to selective withdrawal of liquid from the upper layer, cease to exist above a threshold withdrawal flux, and that this transition corresponds to a saddle-node bifurcation for the hump solutions. Numerical results on the shape evolution of the steady-state interface are compared against previous experimental measurements. We find good agreement where the data overlap. However, the larger dynamic range of the numerical results allows us to show that the large increase in the curvature of the hump tip near transition is not consistent with an approach towards a power-law cusp shape, an interpretation previously suggested from inspection of the experimental measurements alone. Instead, the large increase in the curvature at the hump tip reflects a robust trend in the steady-state interface evolution. For large deflections, the hump height is proportional to the logarithm of the curvature at the hump tip; thus small changes in hump height correspond to large changes in the value of the hump curvature.


2012 ◽  
Vol 37 ◽  
pp. 154-164 ◽  
Author(s):  
Aldo Canova ◽  
Fabio Freschi ◽  
Luca Giaccone ◽  
Alessandra Guerrisi

Sign in / Sign up

Export Citation Format

Share Document