scholarly journals One-Relator Maximal Pro-p Galois Groups and the Koszulity Conjectures

Author(s):  
Claudio Quadrelli

Abstract Let p be a prime number and let ${\mathbb{K}}$ be a field containing a root of 1 of order p. If the absolute Galois group $G_{\mathbb{K}}$ satisfies $\dim\, H^1(G_{\mathbb{K}},\mathbb{F}_p)\lt\infty$ and $\dim\, H^{\,2}(G_{\mathbb{K}},\mathbb{F}_p)=1$, we show that L. Positselski’s and T. Weigel’s Koszulity conjectures are true for ${\mathbb{K}}$. Also, under the above hypothesis, we show that the $\mathbb{F}_p$-cohomology algebra of $G_{\mathbb{K}}$ is the quadratic dual of the graded algebra ${\rm gr}_\bullet\mathbb{F}_p[G_{\mathbb{K}}]$, induced by the powers of the augmentation ideal of the group algebra $\mathbb{F}_p[G_{\mathbb{K}}]$, and these two algebras decompose as products of elementary quadratic algebras. Finally, we propose a refinement of the Koszulity conjectures, analogous to I. Efrat’s elementary type conjecture.

2021 ◽  
Vol 7 (1) ◽  
pp. 212-224
Author(s):  
Lingfeng Ao ◽  
◽  
Shuanglin Fei ◽  
Shaofang Hong

<abstract><p>Let $ n\ge 8 $ be an integer and let $ p $ be a prime number satisfying $ \frac{n}{2} &lt; p &lt; n-2 $. In this paper, we prove that the Galois groups of the trinomials</p> <p><disp-formula> <label/> <tex-math id="FE1"> \begin{document}$ T_{n, p, k}(x): = x^n+n^kp^{(n-1-p)k}x^p+n^kp^{nk}, $\end{document} </tex-math></disp-formula></p> <p><disp-formula> <label/> <tex-math id="FE2"> \begin{document}$ S_{n, p}(x): = x^n+p^{n(n-1-p)}n^px^p+n^pp^{n^2} $\end{document} </tex-math></disp-formula></p> <p>and</p> <p><disp-formula> <label/> <tex-math id="FE3"> \begin{document}$ E_{n, p}(x): = x^n+pnx^{n-p}+pn^2 $\end{document} </tex-math></disp-formula></p> <p>are the full symmetric group $ S_n $ under several conditions. This extends the Cohen-Movahhedi-Salinier theorem on the irreducible trinomials $ f(x) = x^n+ax^s+b $ with integral coefficients.</p></abstract>


2018 ◽  
Vol 2018 (736) ◽  
pp. 69-93 ◽  
Author(s):  
Gebhard Böckle ◽  
Wojciech Gajda ◽  
Sebastian Petersen

AbstractLetkbe an algebraically closed field of arbitrary characteristic, let{K/k}be a finitely generated field extension and letXbe a separated scheme of finite type overK. For each prime{\ell}, the absolute Galois group ofKacts on the{\ell}-adic étale cohomology modules ofX. We prove that this family of representations varying over{\ell}is almost independent in the sense of Serre, i.e., that the fixed fields inside an algebraic closure ofKof the kernels of the representations for all{\ell}become linearly disjoint over a finite extension ofK. In doing this, we also prove a number of interesting facts on the images and on the ramification of this family of representations.


2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Alberto Cassella ◽  
Claudio Quadrelli

AbstractLet 𝔽 be a finite field. We prove that the cohomology algebra H^{\bullet}(G_{\Gamma},\mathbb{F}) with coefficients in 𝔽 of a right-angled Artin group G_{\Gamma} is a strongly Koszul algebra for every finite graph Γ. Moreover, H^{\bullet}(G_{\Gamma},\mathbb{F}) is a universally Koszul algebra if, and only if, the graph Γ associated to the group G_{\Gamma} has the diagonal property. From this, we obtain several new examples of pro-𝑝 groups, for a prime number 𝑝, whose continuous cochain cohomology algebra with coefficients in the field of 𝑝 elements is strongly and universally (or strongly and non-universally) Koszul. This provides new support to a conjecture on Galois cohomology of maximal pro-𝑝 Galois groups of fields formulated by J. Mináč et al.


2020 ◽  
Vol 71 (4) ◽  
pp. 1377-1417
Author(s):  
Aristides Kontogeorgis ◽  
Panagiotis Paramantzoglou

Abstract The fundamental group of Fermat and generalized Fermat curves is computed. These curves are Galois ramified covers of the projective line with abelian Galois groups H. We provide a unified study of the action of both cover Galois group H and the absolute Galois group $\mathrm{Gal}(\bar{\mathbb{Q}}/\mathbb{Q})$ on the pro-$\ell$ homology of the curves in study. Also the relation to the pro-$\ell$ Burau representation is investigated.


2014 ◽  
Vol 10 (08) ◽  
pp. 2045-2095 ◽  
Author(s):  
David Loeffler ◽  
Sarah Livia Zerbes

We construct a two-variable analogue of Perrin-Riou's p-adic regulator map for the Iwasawa cohomology of a crystalline representation of the absolute Galois group of ℚp, over a Galois extension whose Galois group is an abelian p-adic Lie group of dimension 2. We use this regulator map to study p-adic representations of global Galois groups over certain abelian extensions of number fields whose localization at the primes above p is an extension of the above type. In the example of the restriction to an imaginary quadratic field of the representation attached to a modular form, we formulate a conjecture on the existence of a "zeta element", whose image under the regulator map is a p-adic L-function. We show that this conjecture implies the known properties of the 2-variable p-adic L-functions constructed by Perrin-Riou and Kim.


Author(s):  
Jiuya Wang

AbstractElementary abelian groups are finite groups in the form of {A=(\mathbb{Z}/p\mathbb{Z})^{r}} for a prime number p. For every integer {\ell>1} and {r>1}, we prove a non-trivial upper bound on the {\ell}-torsion in class groups of every A-extension. Our results are pointwise and unconditional. This establishes the first case where for some Galois group G, the {\ell}-torsion in class groups are bounded non-trivially for every G-extension and every integer {\ell>1}. When r is large enough, the unconditional pointwise bound we obtain also breaks the previously best known bound shown by Ellenberg and Venkatesh under GRH.


2015 ◽  
Vol 284 ◽  
pp. 186-212 ◽  
Author(s):  
Lior Bary-Soroker ◽  
Moshe Jarden ◽  
Danny Neftin

2006 ◽  
Vol 80 (1) ◽  
pp. 89-103 ◽  
Author(s):  
Cristian Virdol

AbstractIn this paper we compute and continue meromorphically to the whole complex plane the zeta function for twisted modular curves. The twist of the modular curve is done by a modprepresentation of the absolute Galois group.


2013 ◽  
Vol 12 (08) ◽  
pp. 1350044
Author(s):  
TIBOR JUHÁSZ ◽  
ENIKŐ TÓTH

Let K be a field of odd characteristic p, and let G be the direct product of a finite p-group P ≠ 1 and a Hamiltonian 2-group. We show that the set of symmetric elements (KG)* of the group algebra KG with respect to the involution of KG which inverts all elements of G, satisfies all Lie commutator identities of degree t(P) or more, where t(P) denotes the nilpotency index of the augmentation ideal of the group algebra KP. In addition, if P is powerful, then (KG)* satisfies no Lie commutator identity of degree less than t(P). Applying this result we get that (KG)* is Lie nilpotent and Lie solvable, and its Lie nilpotency index and Lie derived length are not greater than t(P) and ⌈ log 2 t(P)⌉, respectively, and these bounds are attained whenever P is a powerful group. The corresponding result on the set of symmetric units of KG is also obtained.


Sign in / Sign up

Export Citation Format

Share Document