scholarly journals Hurricane Katrina Winds Damaged Longleaf Pine Less than Loblolly Pine

2009 ◽  
Vol 33 (4) ◽  
pp. 178-181 ◽  
Author(s):  
Kurt H. Johnsen ◽  
John R. Butnor ◽  
John S. Kush ◽  
Ron C. Schmidtling ◽  
C. Dana Nelson

Abstract Some evidence suggests that longleaf pine might be more tolerant of high winds than either slash pine (Pinus elliotii Englem.) or loblolly pine (Pinus taeda L.). We studied wind damage to these three pine species in a common garden experiment in southeast Mississippi following Hurricane Katrina, a very large, Category 3 hurricane that directly affected the stand in August 2005. The experiment, a factorial arrangement of silvicultural treatments established in 1960, included 120 plots of 100 trees each, covering about 22 ha. Following the hurricane, dbh was measured on all trees, and each tree was rated with respect to mortality from wind damage. Longleaf pine suffered less mortality (7%) than the other two species (slash pine, 14%; loblolly pine, 26%), although the differences in mortality were statistically significant only between longleaf pine and loblolly pine. Longleaf pine lost significantly fewer stems per hectare and less basal area than the two other species. Differences in mortality among species were not a function of mean plot tree height or plot density. Our analyses indicate that longleaf pine is more resistant to wind damage than loblolly pine.

1998 ◽  
Vol 28 (9) ◽  
pp. 1344-1351 ◽  
Author(s):  
Hubert Sterba ◽  
Ralph L Amateis

Crown efficiency was first defined by Assmann (1961. Waldertragskunde. BLV, München) as individual tree volume increment per unit of crown projection area. He hypothesized that within a given crown class, smaller crowns are more efficient because their ratio between crown surface and horizontal crown projection is higher. Data from a loblolly pine (Pinus taeda L.) spacing experiment were used to test if this hypothesis also holds in young loblolly pine stands and, if so, to determine if it explains the increment differences between spacings in the spacing experiment. Using individual tree height relative to plot dominant height to describe crown class, within-plot regression showed that crown efficiency decreased with crown size for trees below dominant height. This relationship was much less pronounced than indicated from Assmann's examples, although the crown surface to crown projection ratio behaved in the same way as Assmann had hypothesized. Crown efficiency as well as the crown surface to crown projection area ratio decreased with increasing density. Basal area increment per hectare increased until total crown closure approached 130% and then stayed constant. This major impact of total crown coverage brings into question the usefullness of crown efficiency as an indicator for unit area growth.


2020 ◽  
Vol 66 (5) ◽  
pp. 623-633
Author(s):  
Y H Weng ◽  
J Grogan ◽  
D W Coble

Abstract Growth response to thinning has long been a research topic of interest in forest science. This study presents the first 3–4 years of response of loblolly pine (Pinus taeda L.) growth to thinning at different intensities. Data were collected from the East Texas Pine Research Project’s region-wide loblolly pine thinning study, which covers a wide variety of stand conditions. Four treatments, light, moderate, and heavy thinning, respectively having 370, 555, and 740 residual trees per hectare after thinning, and an unthinned control, were included. Individual tree diameter at breast height (dbh) and total height were recorded annually for the first 3–4 years after thinning. Results indicate significant differences between treatments in dbh growth in each year after thinning, as well as for all years combined. Each thinning treatment had significantly greater dbh growth than the control in the first growing season with this positive response being more evident in the case of the heavier thinning or at the later years post-thinning. Conversely, the thinning effect on tree height growth was initially negligibly negative, then becoming positive after 2–4 years, with the heavier thinning becoming positive sooner. Tree size class, assigned based on prethinning dbh, had a significant effect on both dbh and height growth responses. Compared to the control, small trees had a greater response both in dbh and in height growth than the medium and large trees over the measurement period. At the stand level, the heavier thinning had significantly less stand basal area per hectare, but the difference in stand basal area per hectare between the thinned and the unthinned plots decreased with years post-thinning. Results from this study can improve our understanding in thinning effects and help forest managers make accurate decisions on silvicultural regimes.


1988 ◽  
Vol 12 (3) ◽  
pp. 208-214 ◽  
Author(s):  
R. Scott Cameron ◽  
Ronald F. Billings

Abstract An inventory of 167,316 ac of 5- to 15-year-old plantations of slash pine (Pinus elliottii Engelm.) or loblolly pine (P. taeda L.) or both in east Texas revealed that infestations (spots) of the southern pine beetle, Dendroctonus frontalis Zimm., occurred in plantations of all ages greater than 5 years. Infestation frequency ranged from 0.1 spots/1000 ac for 6-year-old plantations to 6 to 8 spots/1000 ac for 12- to 15-year-old plantations in 1985. Analyses of subsets of plantation inventories revealed that spots were more frequent in loblolly pine plantations than in slash pine plantations, and more frequent in plantations that had been prescribed-burned. An intensive study of 34 individual spots showed that spot initiation was often associated with stand disturbance but not with intraplantation variations in stand parameters. In turn, regression analyses revealed that the initial number of active trees (spot size) was directly correlated with pine basal area/ac. Rate of summer spot growth in uncontrolled infestations was most strongly correlated with number of active (brood) trees and weakly correlated with tree height and pine basal area/ac. Spots tended to grow faster in loblolly plantations than in those with slash pine. Mean spot growth rates were markedly less within young plantations than rates documented in earlier studies for natural pulpwood and sawtimber stands. A field guide for setting control priorities for beetle infestations in young plantations is provided. South. J. Appl. For. 12(3):208-214.


Forests ◽  
2020 ◽  
Vol 11 (10) ◽  
pp. 1034
Author(s):  
Rodolfo Picchio ◽  
Farzam Tavankar ◽  
Francesco Latterini ◽  
Meghdad Jourgholami ◽  
Behroz Karamdost Marian ◽  
...  

Loblolly pine (Pinus taeda L.) is one of the main exotic conifer species that has been widely planted for the past fifty years for timber production in the coastal areas of northern Iran. Heavy snowfall and strong winds can cause much damage to these forests over a short time span of only a few years. This study was conducted to estimate snow and wind damage and analyze the role of stand thinning in their resistance to snow and wind. Amount and type of snow and wind damage were examined through systematic (80 m × 80 m) sample plots (each plot area of 625 m2) in nine different stands (2–10 plots in each stand) in terms of age, structure, and silviculture history in three replications for each stand in April and May 2020. Results showed that the amount of snow and wind damage had a wide range from 1.3% to 30.7%. Snow damage was more than three times that of wind. Snow and wind damage in the young stands were significantly more serious (p < 0.01) than in the middle-aged and old stands, and damage was significantly higher (p < 0.01) in the unthinned stands than in the thinned ones. Slenderness coefficient (Height/Diameter ratio, HD ratio) of trees resulted to be a good indicator in young and middle-aged stands, while crown form indices (relative crown length and relative crown width) were acceptable indicators in old stands for risk of snow and wind damage. Our results showed that the normal thinning (15% of basal area) decreased snow and wind damage in all the stands, while the heavy thinning (35% of basal area) reduced the snow damage, but it increased the wind one. It is possible to recommend high intensity thinning in young stands, normal thinning in middle-aged stands, and light thinning (15% of basal area) in old ones.


Forests ◽  
2021 ◽  
Vol 12 (7) ◽  
pp. 935
Author(s):  
Mohammad Bataineh ◽  
Ethan Childs

The need for a comprehensive and mechanistic understanding of competition has never been more important as plants adapt to a changing environment and as forest management evolves to focus on maintaining and enhancing complexity. With the recent decline in shortleaf pine (Pinus echinata Mill.) land area, it is critical to determine the effects of competition on shortleaf pine and its performance against loblolly pine (Pinus taeda L.), the preferred planted replacement. We evaluate differences in shortleaf and loblolly pine 10 year mean basal area increment (BAI) and crown dimensions across a gradient of neighborhoods. Linear mixed-effects regression models were developed using BAI and several crown metrics as responses and crowding, competitor species abundance and identity, and initial size and species identity of focal tree as predictors. Crowding of focal trees negatively impacted BAI and crown size (p < 0.001, respectively). Although loblolly pine had three times higher BAI as compared to shortleaf pine within similar neighborhoods, BAI was variable, and the crowding effect did not differ between shortleaf and loblolly pine (p ranged from 0.51–0.99). Competitive impacts on focal trees did not differ by competitor identity (p ranged from 0.07–0.70). Distance-independent competition indices better explained the variation in BAI and horizontal crown metrics, while distance-dependent size ratios were more effective at evaluating vertical crown metrics. These findings highlight shortleaf pine competitive potential in mature, natural-origin stands and provide support for the restoration of pine–hardwood and hardwood–pine stratified mixtures as well as management of shortleaf pine at long rotations.


1997 ◽  
Vol 21 (2) ◽  
pp. 84-89 ◽  
Author(s):  
Steven E. McKeand ◽  
Robert P. Crook ◽  
H. Lee Allen

Abstract The lack of rank change in growth characteristics when open-pollinated families of loblolly pine (Pinus taeda L.) are planted on different sites in the Southeast has greatly simplified breeding for superior genotypes. Although family rank does not usually change, genotype by environment interactions (GxE) may be very important in operational deployment of families in regeneration programs. Using data from GxE trials and two site preparation-fertilization-herbicide trials, we estimated the growth that different families should achieve following application of these silvicultural practices. Better performing families tend to be most responsive to site changes (i.e. genetically unstable). Growth responses to silvicultural treatment will be overestimated if only the most responsive families are used in silvicultural research trials. Similarly, genetic gains will be overestimated if gain trials are planted on only the best sites or receive intensive culture. South. J. Appl. For. 21(2):84-89.


1984 ◽  
Vol 14 (1) ◽  
pp. 128-131 ◽  
Author(s):  
Robert C. Hare

In 4 different years' experiments with loblolly (Pinustaeda L.), slash (Pinuselliottiielliottii Engelm.), and longleaf (Pinuspalustris Mill.) pine, timing of gibberellin A4/7 (GA4/7) treatments was critical for optimal promotion of pollen conebuds. Two or three biweekly treatments given at strategic times were equivalent to six given from May to August. July to August applications best promoted pollen conebuds. Using the cationic surfactant Aromox C/12, aqueous foliar sprays of 200 mg/L of GA4/7 were more effective than ethanolic topical bud treatments for pollen conebud induction in slash pine. Addition of naphthaleneacetic acid enhanced the GA4/7 effect in loblolly pine but diminished it in slash and longleaf pine.


1993 ◽  
Vol 17 (1) ◽  
pp. 26-31 ◽  
Author(s):  
J. David Lenhart ◽  
Gary D. Kronrad ◽  
Michael S. Fountain

Abstract The performance of young (less than 10 yr) loblolly (Pinus taeda L.) and slash (Pinus elliottii Engelm.) pine trees was compared on planted sites in southeast Texas. Performance was compared for: total tree height; tree diameter; height to live tree crown; tree volume index,; incidenceof fusiform rust (Cronartium quercuum [Berk.] Miyabe ex Shirai f. sp. fusiforme); crookedness of stems; and survival rates. For these young trees, slash pine tended to perform better in southeast Texas than loblolly pine in total tree height, tree diameter, stem size, height to first livebranch and stem straightness. However, loblolly pine was less susceptible to fusiform rust than slash pine, and its mortality rate was lower than slash pine. However, based on the performance of these young plantations, a recommendation on the preferred pine species to plant in southeast Texasmight be premature. South. J. Appl. For. 17(1):26-31.


2000 ◽  
Vol 24 (1) ◽  
pp. 31-36 ◽  
Author(s):  
Barry D. Shiver ◽  
John W. Rheney ◽  
Kenneth L. Hitch

Abstract A total of 141 paired plot installations remain of the 160 that were planted with slash (Pinus elliottii Engelm.) and loblolly (P. taedaL.) pine across southeastern Georgia and northern Florida, after 14 growing seasons. Installations were evenly distributed across eight soil types. Analyses indicate that loblolly performed equal to or better than slash pine. There were no soil X species interactions. After 14 yr, loblolly pine had significantly higher survival (71% vs. 66%), stand basal area (98 vs. 81 ft2/ac), total stand volume (1857 vs. 1721 ft3/ac), merchantable stand volume (1497 vs. 1310 ft3/ac), total green weight (53 tons vs. 47 tons), and merchantable green weight (45 vs. 35 tons/ac) than slash pine. Growth over the period from age 11 to age 14 was also higher for loblolly than for slash indicating that the difference in the two species is diverging over time. South. J. Appl. For. 24(1): 31-36.


1988 ◽  
Vol 12 (4) ◽  
pp. 259-261 ◽  
Author(s):  
J. David Lenhart ◽  
W. Thomas McGrath ◽  
Terry L. Hackett

Abstract Five surveys of pine plantations in East Texas over an 18-year period (1969-1987) indicated that fusiform rust (Cronartium quercuum [Berk.] Miyabe ex Shirai f. sp. fusiforme Birdsall and Snow) infection rates have increased to current levels of about 50% on slash pine (Pinus elliottii Engelm.) and are continuing to increase on loblolly pine (Pinus taeda L.) to 10-15% levels. South. J. Appl. For. 12(4):259-261.


Sign in / Sign up

Export Citation Format

Share Document