scholarly journals Sleep Homeostasis and the Function of Sleep—Comments

SLEEP ◽  
2001 ◽  
Vol 24 (7) ◽  
pp. 750-750 ◽  
Author(s):  
R. V. Rial ◽  
M.C. Nicolau ◽  
S. Esteban ◽  
A. Gamundí ◽  
M. Akaârir
2021 ◽  
Author(s):  
J. Carter Loftus ◽  
Roi Harel ◽  
Chase L Nuñez ◽  
Margaret C Crofoot

Sleep is fundamental to the health and fitness of all animals. The physiological importance of sleep is underscored by the central role of homeostasis in determining sleep investment – following periods of sleep deprivation, individuals experience longer and more intense sleep bouts. Yet, most studies of sleep have been conducted in highly controlled settings, disconnected from the ecological and social context that may exert pressures on sleep patterns in conflict with homeostatic regulation. Using tri-axial accelerometry and GPS to track the sleep patterns of a group of wild baboons (Papio anubis) at multiple temporal and spatial scales, we found that ecological and social pressures indeed interfere with homeostatic sleep regulation. Baboons sacrificed time spent sleeping when in less familiar locations and when sleeping in proximity to more group-mates, regardless of how much they had slept the prior night or how much they had physically exerted themselves the preceding day. Moreover, we found that the collective dynamics characteristic of social animal groups persist into the sleep period, as baboons exhibited synchronized patterns of waking throughout the night, particularly with nearby group-mates. Thus, for animals whose fitness depends critically on avoiding predation and developing social relationships, maintaining sleep homeostasis may be only secondary to remaining vigilant when sleeping in risky habitats and interacting with group-mates during the night. Our results highlight the importance of studying sleep in ecologically relevant contexts, where the adaptive function of sleep patterns directly reflect the complex trade-offs that have guided its evolution.


SLEEP ◽  
2019 ◽  
Vol 42 (11) ◽  
Author(s):  
Luisa de Vivo ◽  
Hirotaka Nagai ◽  
Noemi De Wispelaere ◽  
Giovanna Maria Spano ◽  
William Marshall ◽  
...  

Abstract In adolescent and adult brains several molecular, electrophysiological, and ultrastructural measures of synaptic strength are higher after wake than after sleep [1, 2]. These results support the proposal that a core function of sleep is to renormalize the increase in synaptic strength associated with ongoing learning during wake, to reestablish cellular homeostasis and avoid runaway potentiation, synaptic saturation, and memory interference [2, 3]. Before adolescence however, when the brain is still growing and many new synapses are forming, sleep is widely believed to promote synapse formation and growth. To assess the role of sleep on synapses early in life, we studied 2-week-old mouse pups (both sexes) whose brain is still undergoing significant developmental changes, but in which sleep and wake are easy to recognize. In two strains (CD-1, YFP-H) we found that pups spend ~50% of the day asleep and show an immediate increase in total sleep duration after a few hours of enforced wake, indicative of sleep homeostasis. In YFP-H pups we then used serial block-face electron microscopy to examine whether the axon-spine interface (ASI), an ultrastructural marker of synaptic strength, changes between wake and sleep. We found that the ASI of cortical synapses (layer 2, motor cortex) was on average 33.9% smaller after sleep relative to after extended wake and the differences between conditions were consistent with multiplicative scaling. Thus, the need for sleep-dependent synaptic renormalization may apply also to the young, pre-weaned cerebral cortex, at least in the superficial layers of the primary motor area.


SLEEP ◽  
2000 ◽  
Vol 23 (7) ◽  
pp. 1-8 ◽  
Author(s):  
Joel H. Benington

2006 ◽  
Author(s):  
Megumi Kuwabara ◽  
Angela D. Staples ◽  
John E. Bates ◽  
Jackson A. Goodnight

Author(s):  
Antonio Cicchella

Sleep is a process, which happens in human body and has many functions. One relatively recently studied function of sleep is its involvement in the motor learning process. This paper presents a historical overview of the studies on sleep, and the results of two experimental research studies that explore the motor learning of a simple finger tapping tasks performed by adults, and the sleep habits of boys practicing sports. The research results show that sleep has an effect on improving motion retention of simple motor tasks, and that sports improve sleep for boys, thus contributing to better learning.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Thomas Schreiner ◽  
Marit Petzka ◽  
Tobias Staudigl ◽  
Bernhard P. Staresina

AbstractSleep is thought to support memory consolidation via reactivation of prior experiences, with particular electrophysiological sleep signatures (slow oscillations (SOs) and sleep spindles) gating the information flow between relevant brain areas. However, empirical evidence for a role of endogenous memory reactivation (i.e., without experimentally delivered memory cues) for consolidation in humans is lacking. Here, we devised a paradigm in which participants acquired associative memories before taking a nap. Multivariate decoding was then used to capture endogenous memory reactivation during non-rapid eye movement (NREM) sleep in surface EEG recordings. Our results reveal reactivation of learning material during SO-spindle complexes, with the precision of SO-spindle coupling predicting reactivation strength. Critically, reactivation strength (i.e. classifier evidence in favor of the previously studied stimulus category) in turn predicts the level of consolidation across participants. These results elucidate the memory function of sleep in humans and emphasize the importance of SOs and spindles in clocking endogenous consolidation processes.


SLEEP ◽  
2021 ◽  
Author(s):  
Jelena Skorucak ◽  
Nathan Weber ◽  
Mary A Carskadon ◽  
Chelsea Reynolds ◽  
Scott Coussens ◽  
...  

Abstract The high prevalence of chronic sleep restriction in adolescents underscores the importance of understanding how adolescent sleep is regulated under such conditions. One component of sleep regulation is a homeostatic process: if sleep is restricted, then sleep intensity increases. Our knowledge of this process is primarily informed by total sleep deprivation studies and has been incorporated in mathematical models of human sleep regulation. Several animal studies, however, suggest that adaptation occurs in chronic sleep restriction conditions, showing an attenuated or even decreased homeostatic response. We investigated the homeostatic response of adolescents to different sleep opportunities. Thirty-four participants were allocated to one of three groups with 5, 7.5 or 10 h of sleep opportunity per night for 5 nights. Each group underwent a protocol of 9 nights designed to mimic a school week between 2 weekends: 2 baseline nights (10 h sleep opportunity), 5 condition nights (5, 7.5 or 10 h), and two recovery nights (10 h). Measures of sleep homeostasis (slow-wave activity and slow-wave energy) were calculated from frontal and central EEG derivations and compared to predictions derived from simulations of the homeostatic process of the two-process model of sleep regulation. Only minor differences were found between empirical data and model predictions, indicating that sleep homeostasis is preserved under chronic sleep restriction in adolescents. These findings improve our understanding of effects of repetitive short sleep in adolescents.


2012 ◽  
Vol 2012 ◽  
pp. 1-12 ◽  
Author(s):  
Giulio Tononi ◽  
Chiara Cirelli

Sleep must serve an essential, universal function, one that offsets the risk of being disconnected from the environment. The synaptic homeostasis hypothesis (SHY) is an attempt to identify this essential function. Its core claim is that sleep is needed to reestablish synaptic homeostasis, which is challenged by the remarkable plasticity of the brain. In other words, sleep is “the price we pay for plasticity.” In this issue, M. G. Frank reviewed several aspects of the hypothesis and raised several issues. The comments below provide a brief summary of the motivations underlying SHY and clarify that SHY is a hypothesis not about specific mechanisms, but about a universal, essential function of sleep. This function is the preservation of synaptic homeostasis in the face of a systematic bias toward a net increase in synaptic strength—a challenge that is posed by learning during adult wake, and by massive synaptogenesis during development.


Sign in / Sign up

Export Citation Format

Share Document