scholarly journals 0147 Dynamic Alterations in Functional Connectivity Between Sleep- and Wake-Promoting Regions of the Human Brain at the Sleep Onset Period

SLEEP ◽  
2020 ◽  
Vol 43 (Supplement_1) ◽  
pp. A58-A58
Author(s):  
T Ishii ◽  
T Koike ◽  
E Nakagawa ◽  
M Sumiya ◽  
N Sadato

Abstract Introduction The sleep onset period, involving so-called stage N1 sleep largely, is characterized by a reduction in the amount of alpha activity compared to wakefulness. Various kinds of physiological and psychological changes are also apparent, such as slow eye movements, changes in muscle tonus, and the hypnagogic dream-like mentation. These phenomena are thought to be the reflection of dynamic alterations in the brain during the transition period, however, details of these changes have still been uncovered. Methods We aimed to investigate a dynamic shift in the brain connectivity at sleep onset using the method of EEG-fMRI simultaneous recording. Twenty-three healthy subjects participated. EEG/fMRI were recorded simultaneously during an hour’s nap in a 3T-MRI scanner and real-time monitoring of EEG was performed. To record the transition period between multiple times, an experimenter inside a scanner room touched a subject’s foot for inducing arousal when a shift to NREM sleep stage 1 was observed. EEG data were scored according to the AASM criteria. Based on sleep stages defined by polysomnographic findings, we investigated alterations in functional connectivity of sleep- and wake- promoting regions within the hypothalamus and other areas including the thalamus. Results Posterior alpha power showed significant positive correlation with BOLD signals in the anterior and medial dorsal thalamus. Connectivity between the thalamus and cortical regions reduced sharply in the descent to sleep stage. Meanwhile, BOLD signals of the sleep- and wake- promoting regions within the hypothalamus fluctuated with certain temporal lags from fluctuations of alpha rhythm at sleep onset. Conclusion Present findings provide preliminary evidence of dynamics of wake- and sleep- promoting regions in the human brain in vivo. Our data also support the hypothesis that reduced thalamocortical connectivity which limits the capacity to integrate information is associated with the transition of consciousness at sleep onset. Support None

2012 ◽  
Vol 15 (3) ◽  
pp. 264-272 ◽  
Author(s):  
Keiko Tanida ◽  
Masashi Shibata ◽  
Margaret M. Heitkemper

Clinical researchers do not typically assess sleep with polysomnography (PSG) but rather with observation. However, methods relying on observation have limited reliability and are not suitable for assessing sleep depth and cycles. The purpose of this methodological study was to compare a sleep analysis method based on power spectral indices of heart rate variability (HRV) data to PSG. PSG and electrocardiography data were collected synchronously from 10 healthy women (ages 20–61 years) over 23 nights in a laboratory setting. HRV was analyzed for each 60-s epoch and calculated at 3 frequency band powers (very low frequency [VLF]-hi: 0.016–0.04 Hz; low frequency [LF]: 0.04–0.15 Hz; and high frequency [HF]: 0.15–0.4 Hz). Using HF/(VLF-hi + LF + HF) value, VLF-hi, and heart rate (HR) as indices, an algorithm to categorize sleep into 3 states (shallow sleep corresponding to Stages 1 & 2, deep sleep corresponding to Stages 3 & 4, and rapid eye movement [REM] sleep) was created. Movement epochs and time of sleep onset and wake-up were determined using VLF-hi and HR. The minute-by-minute agreement rate with the sleep stages as identified by PSG and HRV data ranged from 32 to 72% with an average of 56%. Longer wake after sleep onset (WASO) resulted in lower agreement rates. The mean differences between the 2 methods were 2 min for the time of sleep onset and 6 min for the time of wake-up. These results indicate that distinguishing WASO from shallow sleep segments is difficult using this HRV method. The algorithm's usefulness is thus limited in its current form, and it requires additional modification.


Author(s):  
Stephanie Hawes ◽  
Carrie R. H. Innes ◽  
Nicholas Parsons ◽  
Sean P.A. Drummond ◽  
Karen Caeyensberghs ◽  
...  

AbstractSleep can intrude into the awake human brain when sleep deprived or fatigued, even while performing cognitive tasks. However, how the brain activity associated with sleep onset can co-exist with the activity associated with cognition in the awake humans remains unexplored. Here, we used simultaneous fMRI and EEG to generate fMRI activity maps associated with EEG theta (4-7 Hz) activity associated with sleep onset. We implemented a method to track these fMRI activity maps in individuals performing a cognitive task after well-rested and sleep-deprived nights. We found frequent intrusions of the fMRI maps associated with sleep-onset in the task-related fMRI data. These sleep events elicited a pattern of transient fMRI activity, which was spatially distinct from the task-related activity in the frontal and parietal areas of the brain. They were concomitant with reduced arousal as indicated by decreased pupil size and increased response time. Graph theoretical modelling showed that the activity associated with sleep onset emerges from the basal forebrain and spreads anterior-posteriorly via the brain’s structural connectome. We replicated the key findings in an independent dataset, which suggests that the approach can be reliably used in understanding the neuro-behavioural consequences of sleep and circadian disturbances in humans.


1989 ◽  
Vol 155 (S5) ◽  
pp. 37-39 ◽  
Author(s):  
Hinderk M. Emrich

Hypotheses as to the pathogenesis of schizophrenia can be discussed at different levels of a possible manifestation of the causative factor: the macroscopic-morphological, the microscopic-morphological, and the molecular. Some abnormalities have been observed on all of them: e.g. increased ventricular-brain ratios in CT, hypofrontality in SPECT and in glucographic PET-scans, and other macromorphological abnormalities (for reviews cf. Bogerts 1984; Mundt, 1986; Bogerts et al, 1987), gliosis on a microscopic level (Stevens, 1982), and an increased dopamine-binding in in vivo receptor studies (PET as well as in post-mortem studies; Cazzullo, 1988). However, the diversity and variability of these findings point to the view that rather than there being a single distinct pathogenetic factor responsible for the pathogenesis of schizophrenic psychoses, a constitutional disposition exists, which can be described as a functional dysequilibrium within the human brain. From this point of view, schizophrenia would not appear as an inherited disorder of metabolism, but as a weakness of a neurobiological ‘system’, i.e. as an interactional disorder of a complex of networks, in which the interaction between different substructures is labile in such a way that under special conditions (e.g. ‘stress’), a decompensation (functional breakdown) results. In this sense, ‘vulnerability’ to schizophrenia may be interpreted as a consequence of a constitutional deficiency of the brain which results in an inability to stabilise, under specially challenging conditions, the interaction between different substructures of the human brain. Before this ‘functional dysequilibrium-hypothesis’ (which is a special form of a constitutional structural deficiency-hypothesis) is discussed, and before the question is raised as to which are the relevant dysequilibrated components, some indication will be given as to why such an hypothesis appears plausible.


2018 ◽  
Vol 1 (3) ◽  
pp. 108-121
Author(s):  
Natashia Swalve ◽  
Brianna Harfmann ◽  
John Mitrzyk ◽  
Alexander H. K. Montoye

Activity monitors provide an inexpensive and convenient way to measure sleep, yet relatively few studies have been conducted to validate the use of these devices in examining measures of sleep quality or sleep stages and if other measures, such as thermometry, could inform their accuracy. The purpose of this study was to compare one research-grade and four consumer-grade activity monitors on measures of sleep quality (sleep efficiency, sleep onset latency, and wake after sleep onset) and sleep stages (awake, sleep, light, deep, REM) against an electroencephalography criterion. The use of a skin temperature device was also explored to ascertain whether skin temperature monitoring may provide additional data to increase the accuracy of sleep determination. Twenty adults stayed overnight in a sleep laboratory during which sleep was assessed using electroencephalography and compared to data concurrently collected by five activity monitors (research-grade: ActiGraph GT9X Link; consumer-grade: Fitbit Charge HR, Fitbit Flex, Jawbone UP4, Misfit Flash) and a skin temperature sensor (iButton). The majority of the consumer-grade devices overestimated total sleep time and sleep efficiency while underestimating sleep onset latency, wake after sleep onset, and number of awakenings during the night, with similar results being seen in the research-grade device. The Jawbone UP4 performed better than both the consumer- and research-grade devices, having high levels of agreement overall and in epoch-by-epoch sleep stage data. Changes in temperature were moderately correlated with sleep stages, suggesting that addition of skin temperature could increase the validity of activity monitors in sleep measurement.


2014 ◽  
Vol 28 (4) ◽  
pp. 548-558 ◽  
Author(s):  
Chiara Mastropasqua ◽  
Marco Bozzali ◽  
Barbara Spanò ◽  
Giacomo Koch ◽  
Mara Cercignani

SLEEP ◽  
2020 ◽  
Vol 43 (Supplement_1) ◽  
pp. A462-A463
Author(s):  
M Douch ◽  
M Soubrier ◽  
C Pinaud ◽  
M Harris ◽  
V Thorey

Abstract Introduction Biofeedback is proposed as an alternative method to help patients with insomnia reducing their anxiety. Some studies have shown that auditory neurofeedback can be effective at reducing sleep-onset latency. However, the AASM sleep stage classification only describes the sleep-onset as a binary state (i.e. wake or N1) which makes it not adapted for neurofeedback. We introduced a simple 4-stages classification for sleep-onset, on 10 seconds EEG epoch. The aim of this study was to develop an automatic method to detect these stages, and an online algorithm embedded in the Dreem headband (DH) that adapted the auditory feedback based on the current stage. Methods Fourteen subjects underwent an overnight PSG monitoring, from which the first sleep-onset period was extracted. We defined the simple 4-stages classification for sleep-onset on 10 seconds EEG epoch as following: SO1) > 75% of the epoch covered by alpha frequencies SO2) between 25% and 50% of the window covered with alpha frequencies, SO3) Alpha frequencies covered less than 25% and theta frequencies covered less than 30% of the epoch, and SO4) Theta frequency covered more than 30% of the epoch. For the manual scoring, 4 sleep scorers have been given the instructions and a Q&A session after scoring the first two records. For the algorithm, a sound triggering algorithm was linked to a neural network trained on the scored data, to dynamically adapt the sound to the sleep-onset stage. Results The scorers reached an average agreement of 68 + 15% over all the records. The neural network reached an accuracy of 68%. Per state the accuracy was: 71 ± 32% (S1), 52 ± 22% (S2), 54 ± 23% (S3), 79 ± 21% (S4). The automatic neurofeedback was able to adapt sound stimulations in real-time based on stages and was well perceived among first testers. Conclusion The results of this preliminary work show that we can reach a higher agreement by reducing the epoch duration and use this classification to produce automatic biofeedback during the sleep onset period. Further studies using a data-driven method should be conducted. Support This study supported by Dreem sas.


Author(s):  
Mohammad Ali Taheri ◽  
Sara Torabi ◽  
Noushin Nabavi ◽  
Fatemeh Modarresi-Asem ◽  
Majid Abbasi Sisara ◽  
...  

Task fMRI has played a critical role in recognizing the specific functions of the different regions of human brain during various cognitive activities. This study aimed to investigate group analysis and functional connectivity in the Faradarmangars brain during the Faradarmani CF (FCF) connection. Using task functional MRI (task-fMRI), we attempted the identification of different activated and deactivated brain regions during the Consciousness Filed connection. Clusters that showed significant differences in peak intensity between task and rest group were selected as seeds for seed-voxel analysis. Connectivity of group differences in functional connectivity analysis was determined following each activation and deactivation network. In this study, we report the fMRI-based representation of the FCF connection at the human brain level. The group analysis of FCF connection task revealed activation of frontal lobe (BA6/BA10/BA11). Moreover, seed based functional connectivity analysis showed decreased connectivity within activated clusters and posterior Cingulate Gyrus (BA31). Moreover, we observed an increased connectivity within deactivated clusters and frontal lobe (BA11/BA47) during the FCF connection. Activation clusters as well as the increased and decreased connectivity between different regions of the brain during the FCF connection, firstly, validates the significant effect of the FCF and secondly, indicates a distinctive pattern of connection with this non-material and non-energetic field, in the brain.


SLEEP ◽  
2020 ◽  
Vol 43 (Supplement_1) ◽  
pp. A460-A461
Author(s):  
E P Pollet ◽  
D P Pollet ◽  
B Long ◽  
A A Qutub

Abstract Introduction Fitness-based wearables and other emerging sensor technologies have the potential to track sleep across large populations longitudinally in at-home environments. To understand how these devices can inform research studies, limitations of available trackers need to be compared to traditional polysomnography (PSG). Here we assessed discrepancies in sleep staging in activity trackers vs. PSG in subjects with various sleep disorders. Methods Twelve subjects (age 41-78, 7f, 5m) wore a Fitbit Charge 3 while undergoing a scheduled sleep study. Six subjects had been previously diagnosed with a sleep disorder (5 OSA, 1 CSA). 4 subjects used CPAP throughout the night, 2 had a split night (CPAP 2nd half of the night), and 6 had a PSG only. Activity tracker staging was compared to 2 RPSGTs staging. Results Of the 12 subjects, eight subjects’ sleep was detected in the activity tracker, and compared across sleep stages to the PSG (7 female, 1 male, ages 41-78, AHI 0.3-87, RDI 0.5-94.4, sleep efficiency 74%+/-18, 4 PSG, 1 split, 3 CPAP). The activity tracker matched either tech 52% (+/- 13). The average difference in score tech and activity tracker staging for sleep onset (SO) was 16 +/- 15 minutes and wake after sleep onset was 43.5 +/- 44 minutes. Sensitivity, specificity, and balanced accuracy were found for each sleep stage. Respectively, Wake: 0.45+/-0.27, 0.97+/-0.03, 0.71+/-0.12, REM: 0.41+/-0.30, 0.90+/-0.06, 0.60+/-0.28, Light: 0.71+/-0.09, 0.58+/-0.19, 0.65+/-0.10, Deep: 0.63+/-0.52, 0.88+/-0.05, 0.59+/-0.49. Conclusion From this study of 12 subjects seen at a sleep clinic for suspected sleep disorders, activity trackers performed best in wake, REM and deep sleep specificity (>=88%), while they lacked sensitivity to REM and wake (<=45%) stages. The tracker did not detect sleep in 4 subjects who had elevated AHI or low sleep efficiency. Further analysis can identify whether discrepancies between the Fitbit and PSG can be predicted by distinct patterns in sleep staging and/or identify subject exclusion criteria for activity tracking studies. Support This project in on-going with the support of Academy Diagnostics Sleep and EEG Center and staff.


SLEEP ◽  
2020 ◽  
Vol 43 (Supplement_1) ◽  
pp. A283-A284
Author(s):  
A Kishi ◽  
T Kitajima ◽  
R Kawai ◽  
M Hirose ◽  
N Iwata ◽  
...  

Abstract Introduction Narcolepsy is a chronic sleep disorder characterized by excessive daytime sleepiness and abnormal REM sleep phenomena. Narcolepsy can be distinguished into type 1 (NT1; with cataplexy) and type 2 (NT2; without cataplexy). It has been reported that sleep stage sequences at sleep-onset as well as sleep-wake dynamics across the night may be useful in the differential diagnosis of hypersomnia. Here we studied dynamic features of sleep stage transitions during whole night sleep in patients with NT1, NT2, and other types of hypersomnia (o-HS). Methods Twenty patients with NT1, 14 patients with NT2, and 35 patients with o-HS underwent overnight PSG. Transition probabilities between sleep stages (wake, N1, N2, N3, and REM) and survival curves of continuous runs of each sleep stage were compared between groups. Transition-specific survival curves of continuous runs of each sleep stage, dependent on the subsequent stage of the transition, were also compared. Results The probability of transitions from N1-to-wake was significantly greater in NT1 than in NT2 and o-HS while that from N1-to-N2 was significantly smaller in NT1 than in NT2 and o-HS. The probability of transitions from N2-to-REM was significantly smaller in NT1 than in o-HS. Wake and N1 were significantly more continuous in NT1 than in NT2; specifically, N1 followed by N2 was significantly more continuous in NT1 than in NT2 and o-HS. N2 was significantly less continuous in NT1 and NT2 than in o-HS; this was specifically confirmed for N2 followed by N1/wake. REM sleep was significantly less continuous in NT1 than in NT2 and o-HS; specifically, REM sleep followed by wake was significantly less continuous in NT1 than in o-HS. Continuity of N3 did not differ significantly between groups. Conclusion Dynamics of sleep stage transitions differed between NT1, NT2, and o-HS. Dynamic features of sleep such as sleep instability, persistency of wake/N1, and REM fragmentation may differentiate NT1 from NT2, while N2 continuity may differentiate narcolepsy from o-HS. The results suggest that sleep transition analysis may be of clinical utility and provide insights into the underlying pathophysiology of hypersomnia and narcolepsy. Support JSPS KAKENHI (18K17891 to AK).


Sign in / Sign up

Export Citation Format

Share Document