Toxicoproteomic Analysis of Poly(ADP-Ribose)-Associated Proteins Induced by Oxidative Stress in Human Proximal Tubule Cells

2019 ◽  
Vol 171 (1) ◽  
pp. 117-131
Author(s):  
Argel Islas-Robles ◽  
Deepthi Yedlapudi ◽  
Serrine S Lau ◽  
Terrence J Monks

Abstract 2,3,5-Tris-(glutathion-S-yl)hydroquinone (TGHQ) is a nephrotoxic and nephrocarcinogenic metabolite of hydroquinone. TGHQ generates reactive oxygen species (ROS), causing DNA-strand breaks, hyperactivation of PARP-1, increases in intracellular calcium ([Ca2+]i), and cell death. PARP-1 catalyzes the attachment of ADP-ribose polymers (PAR) to target proteins. In human kidney proximal tubule cells, ROS-mediated PARP-1 hyperactivation and elevations in [Ca2+]i are reciprocally coupled. The molecular mechanism of this interaction is unclear. The aim of the present study was to identify ROS-induced PAR-associated proteins to further understand their potential role in cell death. PAR-associated proteins were enriched by immunoprecipitation, identified by LC-MS/MS, and relative abundance was obtained by spectral counting. A total of 356 proteins were PAR-modified following TGHQ treatment. A total of 13 proteins exhibited gene ontology annotations related to calcium. Among these proteins, the general transcription factor II-I (TFII-I) is directly involved in the modulation of [Ca2+]i. TFII-I binding to phospholipase C (PLC) leads to calcium influx via the TRPC3 channel. However, inhibition of TRPC3 or PLC had no effect on TGHQ-mediated cell death, suggesting that their loss of function may be necessary but insufficient to cause cell death. Nevertheless, TGHQ promoted a time-dependent translocation of TFII-I from the nucleus to the cytosol concomitant with a decrease in tyrosine phosphorylation in α/β-TFII-I. Therefore it is likely that ROS have an important impact on the function of TFII-I, such as regulation of transcription, and DNA translesion synthesis. Our data also shed light on PAR-mediated signaling during oxidative stress, and contributes to the development of strategies to prevent PAR-dependent cell death.

2007 ◽  
Vol 22 (6) ◽  
pp. 798-803 ◽  
Author(s):  
Gerald Schwerdt ◽  
Antje Kirchhoff ◽  
Ruth Freudinger ◽  
Brigitte Wollny ◽  
Andreas Benesic ◽  
...  

2005 ◽  
Vol 68 (4) ◽  
pp. 1543-1553 ◽  
Author(s):  
Marieke S.J. Schepers ◽  
Eddy S. Van Ballegooijen ◽  
Chris H. Bangma ◽  
Carl F. Verkoelen

2006 ◽  
Vol 291 (1) ◽  
pp. F67-F78 ◽  
Author(s):  
H. Thomas Lee ◽  
Mihwa Kim ◽  
Michael Jan ◽  
Charles W. Emala

Renal ischemia-reperfusion (IR) injury is a major clinical problem without effective therapy. We recently reported that volatile anesthetics protect against renal IR injury, in part, via their anti-inflammatory properties. In this study, we demonstrate the anti-inflammatory and antinecrotic effects of sevoflurane in cultured kidney proximal tubule cells and probed the mechanisms of sevoflurane-induced renal cellular protection. To mimic inflammation, human kidney proximal tubule (HK-2) cells were treated with tumor necrosis factor-α (TNF-α; 25 ng/ml) in the presence or absence of sevoflurane. In addition, we studied the effects of sevoflurane pretreatment on hydrogen peroxide (H2O2)-induced necrotic cell death in HK-2 or porcine proximal tubule (LLC-PK1) cells. We demonstrate that sevoflurane suppressed proinflammatory effects of TNF-α evidenced by attenuated upregulation of proinflammatory cytokine mRNA (TNF-α, MCP-1) and ICAM-1 protein and reduced nuclear translocation of the proinflammatory transcription factors NF-κB and AP-1. Sevoflurane reduced necrotic cell death induced with H2O2 in HK-2 cells as well as in LLC-PK1 cells. Sevoflurane treatment resulted in phosphorylation of prosurvival kinases, ERK and Akt, and increased de novo HSP-70 protein synthesis without affecting the synthesis of HSP-27 or HSP-32. We conclude that sevoflurane has direct anti-inflammatory and antinecrotic effects in vitro in a renal cell type particularly sensitive to injury following IR injury. These mechanisms may, in part, account for volatile anesthetics' protective effects against renal IR injury.


2012 ◽  
Vol 211 ◽  
pp. S168
Author(s):  
Alice Limonciel ◽  
Anja Wilmes ◽  
Lydia Aschauer ◽  
Robert Radford ◽  
Katarzyna Bloch ◽  
...  

2010 ◽  
Vol 298 (5) ◽  
pp. F1214-F1221 ◽  
Author(s):  
Istvan Arany ◽  
Amir Faisal ◽  
Jeb S. Clark ◽  
Trinity Vera ◽  
Radhakrishna Baliga ◽  
...  

Mitochondrial dysfunction is involved in pathopysiology of ischemia-reperfusion-induced acute kidney injury (AKI). The p66shc adaptor protein is a newly recognized mediator of mitochondrial dysfunction, which might play a role in AKI-induced renal tubular injury. Oxidative stress-mediated Serine36 phosphorylation of p66shc facilitates its transportation to the mitochondria where it oxidizes cytochrome c and generates excessive amount of reactive oxygen species (ROS). The consequence is mitochondrial depolarization and injury. Earlier we determined that p66shc plays an essential role in injury of cultured mouse renal proximal tubule cells during oxidative stress. Here, we studied the role of p66shc in ROS generation and consequent mitochondrial dysfunction during oxidative injury in renal proximal tubule cells. We employed p66shc knockdown renal proximal tubule cells and cells that overexpress wild-type, Serine phosphorylation (S36A), or cytochrome c-binding (W134F) mutants of p66shc. Inhibition of the mitochondrial electron transport chain or the mitochondrial permeability transition revealed that hydrogen peroxide-induced injury is mitochondrial ROS and consequent mitochondrial depolarization dependent. We also found that through Ser36 phosphorylation and mitochondria/cytochrome c binding, p66shc mediates those effects. We propose a similar mechanism in vivo as we demonstrated mitochondrial binding of p66shc as well as its association with cytochrome c in the postischemic kidneys of mice. Thus, manipulating p66shc might offer a new therapeutic modality to ameliorate renal ischemic injury.


Sign in / Sign up

Export Citation Format

Share Document