scholarly journals Expression profiles of genes related to melatonin and oxidative stress in human renal proximal tubule cells treated with antibiotic amphotericin B and its modified forms

2015 ◽  
Vol 39 ◽  
pp. 856-864 ◽  
Author(s):  
Joanna GOLA ◽  
Aleksandra SKUBIS ◽  
Bartosz SIKORA ◽  
Celina KRUSZNIEWSKA-RAJS ◽  
Jolanta ADAMSKA ◽  
...  
2010 ◽  
Vol 298 (5) ◽  
pp. F1214-F1221 ◽  
Author(s):  
Istvan Arany ◽  
Amir Faisal ◽  
Jeb S. Clark ◽  
Trinity Vera ◽  
Radhakrishna Baliga ◽  
...  

Mitochondrial dysfunction is involved in pathopysiology of ischemia-reperfusion-induced acute kidney injury (AKI). The p66shc adaptor protein is a newly recognized mediator of mitochondrial dysfunction, which might play a role in AKI-induced renal tubular injury. Oxidative stress-mediated Serine36 phosphorylation of p66shc facilitates its transportation to the mitochondria where it oxidizes cytochrome c and generates excessive amount of reactive oxygen species (ROS). The consequence is mitochondrial depolarization and injury. Earlier we determined that p66shc plays an essential role in injury of cultured mouse renal proximal tubule cells during oxidative stress. Here, we studied the role of p66shc in ROS generation and consequent mitochondrial dysfunction during oxidative injury in renal proximal tubule cells. We employed p66shc knockdown renal proximal tubule cells and cells that overexpress wild-type, Serine phosphorylation (S36A), or cytochrome c-binding (W134F) mutants of p66shc. Inhibition of the mitochondrial electron transport chain or the mitochondrial permeability transition revealed that hydrogen peroxide-induced injury is mitochondrial ROS and consequent mitochondrial depolarization dependent. We also found that through Ser36 phosphorylation and mitochondria/cytochrome c binding, p66shc mediates those effects. We propose a similar mechanism in vivo as we demonstrated mitochondrial binding of p66shc as well as its association with cytochrome c in the postischemic kidneys of mice. Thus, manipulating p66shc might offer a new therapeutic modality to ameliorate renal ischemic injury.


Planta Medica ◽  
2002 ◽  
Vol 68 (6) ◽  
pp. 483-486 ◽  
Author(s):  
Ho Jae Han ◽  
Soo Hyun Park ◽  
Kwon Moo Park ◽  
Byung Cheol Yoon ◽  
Tae Sung Kim ◽  
...  

2004 ◽  
Vol 287 (4) ◽  
pp. C1058-C1066 ◽  
Author(s):  
Ho Jae Han ◽  
Min Jin Lim ◽  
Yun Jung Lee

Exposure of renal proximal tubule cells to oxalate may play an important role in cell proliferation, but the signaling pathways involved in this effect have not been elucidated. Thus the present study was performed to examine the effect of oxalate on 3H-labeled thymidine incorporation and its related signal pathway in primary cultured rabbit renal proximal tubule cells (PTCs). The effects of oxalate on [3H]thymidine incorporation, lactate dehydrogenase (LDH) release, Trypan blue exclusion, H2O2 release, activation of mitogen-activated protein kinases (MAPKs), and 3H-labeled arachidonic acid (AA) release were examined in primary cultured renal PTCs. Oxalate inhibited [3H]thymidine incorporation in a time- and dose-dependent manner. However, its analogs did not affect [3H]thymidine incorporation. Oxalate (1 mM) significantly increased H2O2 release, which was blocked by N-acetyl-l-cysteine (NAC) and catalase (antioxidants). Oxalate significantly increased p38 MAPK and stress-activated protein kinase (SAPK)/c-Jun NH2-terminal kinase (JNK) activity, not p44/42 MAPK. Oxalate stimulated [3H]AA release and translocation of cytosolic phospholipase A2 (cPLA2) from the cytosolic fraction to the membrane fraction. Indeed, oxalate significantly increased prostaglandin E2 (PGE2) production compared with control. Oxalate-induced inhibition of [3H]thymidine incorporation and increase of [3H]AA release were prevented by antioxidants (NAC), a p38 MAPK inhibitor (SB-203580), a SAPK/JNK inhibitor (SP-600125), or PLA2 inhibitors [mepacrine and arachidonyl trifluoromethyl ketone (AACOCF3)], but not by a p44/42 MAPK inhibitor (PD-98059). These findings suggest that oxalate inhibits renal PTC proliferation via oxidative stress, p38 MAPK/JNK, and cPLA2 signaling pathways.


Redox Biology ◽  
2014 ◽  
Vol 2 ◽  
pp. 570-579 ◽  
Author(s):  
Peiying Yu ◽  
Weixing Han ◽  
Van Anthony M. Villar ◽  
Yu Yang ◽  
Quansheng Lu ◽  
...  

2005 ◽  
Vol 288 (5) ◽  
pp. F988-F996 ◽  
Author(s):  
Ho Jae Han ◽  
Yun Jung Lee ◽  
Su Hyung Park ◽  
Jang Hern Lee ◽  
Mary Taub

Oxidative stress plays an important role in the pathogenesis of renal diseases such as diabetic nephropathy. The metabolism of excessive intracellular glucose may involve a number of processes. One consequence of excessive intracellular glucose levels is an increased rate of oxidative phosphorylation under hyperglycemic conditions, whereas another consequence is an increase in the metabolism of glucose to sorbitol by aldose reductase. In addition, hyperglycemia may result in the activation of NADPH oxidase, the production of superoxide anion, and hydrogen peroxide (H2O2). In this report, we investigate the mechanisms responsible for the H2O2 production that occurs as the consequence of hyperglycemia and the effect of H2O2 on the activity of the Na+/glucose cotransport system (SGLT) in primary cultures of renal proximal tubule cells (PTCs). When primary PTCs were cultured in the presence of high glucose, one consequence was that the Na+/glucose cotransport system was inhibited, as indicated by uptake studies utilizing α-methyl-d-glucoside (α-MG), a nonmetabolizable analog of d-glucose. Pretreatment of the cultures with either 1) aminoguanidine or pyridoxamine [inhibitors of the accumulation of advanced glycation end products (AGEs)], 2) rotenone (an inhibitor of the mitochondrial electron transport chain), or 3) apocynin or diphenylene iodonium (DPI; inhibitors of NADPH oxidase) blocked the observed changes that occurred as a consequence of the incubation of the PTCs with high glucose. Included among these changes were the observed increase in H2O2 levels, as well as an increase in lipid peroxide production, and a decrease both in the activity of catalase and in the level of glutathione (GSH), endogenous antioxidants. The high glucose-induced decrease in the level of the Na+/glucose cotransporter was similarly prevented by either aminoguanidine, rotenone, or apocynin. Thus the inhibitory effect of high glucose on both the level of the Na+/glucose cotransport system and the activity of the Na+/glucose cotransport system can be explained, at least in part, as being due to the effects of the H2O2, the consequent formation of AGEs, the increase in mitochondrial metabolism, and in NADPH oxidase activity in the PTCs. Other related changes observed in the PTCs that could be reversed by treatment with either aminoguanidine, pyridoxamine, rotenone, apocynin, or DPI included an increase in transforming growth factor-β1 secretion and the activation of the NF-κB signal transduction pathway.


Sign in / Sign up

Export Citation Format

Share Document