scholarly journals Whole-plant water flux in understory red maple exposed to altered precipitation regimes

1998 ◽  
Vol 18 (2) ◽  
pp. 71-79 ◽  
Author(s):  
S. D. Wullschleger ◽  
P. J. Hanson ◽  
T. J. Tschaplinski
1997 ◽  
Vol 122 (2) ◽  
pp. 285-289 ◽  
Author(s):  
Marc van Iersel

Mechanical conditioning can be used to control the height of vegetable and ornamental transplants. Previous research indicated that brushing plants increases cuticular water loss from detached leaves, which may be an indication of decreased drought resistance. This might decrease post-transplant survival of the plants. The objectives of this study were to determine the effect of brushing on growth and gas exchange by tomato (Lycopersicon esculentum Mill.) and quantify whole-plant water use during a slow dry-down period. Tomato plants were grown from seed in a greenhouse during Fall 1995. The brushing treatment started 11 days after seeding and consisted of 40 strokes, twice each day. After 39 days of treatment, brushing reduced height 32%, leaf area 34%, and shoot dry mass 29% compared to control plants. Brushing did not affect leaf gas exchange. Brushed plants had a higher stem water flux than control plants during the first 3 days of a 6-day dry-down period. Stem water flux was lower than that of control plants later in the cycle, presumably because brushed plants used more of the available water during the first 3 days. On the third day of the dry-down period, leaf conductance of brushed plants was 35% higher than that of control plants, resulting in a 10% higher transpiration rate per unit leaf area. Because brushed plants had less leaf area than controls, differences in whole-plant water use were small. Time to wilting was similar for the brushed and unbrushed plants (6 days after withholding water). It seems unlikely that brushing would have a major effect on drought tolerance of plants.


2021 ◽  
Author(s):  
Tianxue Yang ◽  
Junda Chen ◽  
Xiaoyue Zhong ◽  
Xuechen Yang ◽  
Gui Wang ◽  
...  

Abstract Purpose Climate models predict shifts in precipitation patterns characterized by increased precipitation amount and decreased frequency for semi-arid grasslands in northeast China. However, under these novel climatic conditions, potential differences in plant biomass and its allocation among different degraded grasslands remain unclear.Methods We conducted a mesocosm experiment to test the effects of higher precipitation amount (increased by 50% from the long-term mean) and lower frequency (decreased by 50%) on plant biomass and allocation in the lightly degraded (LDG), moderately degraded (MDG), and severely degraded grasslands (SDG).Results Lower precipitation frequency promoted belowground biomass (BGB), while reducing aboveground biomass (AGB) allocation through enhancing soil water variability. Higher precipitation amount enhanced AGB in LDG and MDG, but not in SDG due to less soil inorganic nitrogen. Lower precipitation frequency weakened the positive effects of higher precipitation amount on biomass. Under altered precipitation, adjustment of AGB vs. BGB allocation was the primary biomass allocation strategy in LDG and SDG. However, to maintain water acquirement, plants in MDG preferred to adjust root vertical distribution, and allocated more roots to the deep soil layer where had a relatively stable water source. This strategy was driven by the changes in plant community composition of the dominant species in MDG.Conclusions The findings of this research emphasized the importance of considering the degradation level of grasslands when predicting the responses of the ecosystem functions to the projected changes in precipitation regime. These findings are critical for making feasible decisions for the sustainable management of degraded grasslands.


2015 ◽  
Vol 3 (3) ◽  
pp. 220-228 ◽  
Author(s):  
Hipólito Medrano ◽  
Magdalena Tomás ◽  
Sebastià Martorell ◽  
Jaume Flexas ◽  
Esther Hernández ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document