Comment on “Theoretical Analysis of Soil and Plant Traits Influencing Daily Plant Water Flux on Drying Soils” by T.R. Sinclair. Agron. J. 97:1148-1152 (2005)

2007 ◽  
Vol 99 (4) ◽  
pp. 1188-1189 ◽  
Author(s):  
Klaas Metselaar ◽  
Thomas R. Sinclair
2021 ◽  
Author(s):  
Maoya Bassiouni ◽  
Stefano Manzoni ◽  
Giulia Vico

<p>Process-based models are needed to improve estimates of water and carbon cycles in variable climatic conditions. Yet, their utility is often limited by our inability to directly measure plant stomatal and hydraulic traits at scales suitable to quantify characteristics of whole ecosystems. Inferring such parameters from ecosystem-scale data with parsimonious models offers an avenue to address this limitation. To this aim, we use a simple representation of the water flux through the soil-plant-atmosphere continuum (SPAC) and derive a parameterization of Feddes-type soil water-limitation constraints on transpiration (expressed via a soil moisture dependent function β). This parameterization explicitly accounts for community-effective plant eco-physiological traits as encoded in the SPAC model parameters. We express analytically the fractional loss of conductivity in well-watered conditions and the soil saturation thresholds at which transpiration is down-regulated from its well-watered rate and at which transpiration ceases, as a function of non-dimensional parameter groups. These non-dimensional groups combine plant stomatal and hydraulic traits, soil texture and climate. We implement the theoretical β function into a soil water balance and infer distributions of plant traits which best-match FLUXNET observations in a range of biomes. Finally, we analyze the resulting non-dimensional groups to explore patterns in plant water use strategies. Our results indicate that non-dimensional groups reflect combinations of plant traits which are adapted to growing season environmental conditions and these groups may be more meaningful model parameters than individual traits at ecosystem scales. Additionally, using non-dimensional groups instead of focusing on individual parameters reduces risks of equifinality and provides future opportunities to exploit satellite data to quantify robust ecosystem-scale parameters. This analysis provides a parsimonious and functionally accurate alternative to account for ecosystem hydraulic controls and feedbacks and can help overcome limitations of commonly used empirical water-limitation constraints.</p>


1998 ◽  
Vol 18 (2) ◽  
pp. 71-79 ◽  
Author(s):  
S. D. Wullschleger ◽  
P. J. Hanson ◽  
T. J. Tschaplinski

2020 ◽  
Author(s):  
Lalasia Bialic-Murphy ◽  
Nicholas Smith ◽  
Priya Voothuluru ◽  
Robert McElderry ◽  
Morgan Roche ◽  
...  

Abstract Despite widespread evidence that biological invasion influences the biotic and abiotic soil environments, the extent to which each of these pathways underpins the effects of invasion on native plant traits and performance is unknown. Leveraging a long-term (14-yr) manipulative field experiment, we show that an allelochemical-producing invader, Alliaria petiolata, affects native plants through biotic mechanisms, altering the soil fungal community composition, with no apparent shifts in soil nutrient availability. These changes in belowground soil fungal communities resulted in a high cost of resource uptake for native forest perennial herbs and a shift in functional traits linked to their carbon and nutrient economies. Furthermore, we illustrate that some species in the invaded community compensate for high nutrient costs by reducing nutrient uptake and maintaining photosynthesis by expending more water. This demonstrates a trade-off in trait investment that increases nutrient use efficiency as nutrient costs increase. Our results show that invasion-induced disruptions in the soil fungal community belowground can cascade to affect aboveground plant communities via shifts in physiological traits needed to maintain plant water and nutrient economies. These complex above-belowground linkages suggest that plant invasions should be evaluated at the system-level to fully understand and predict their impact on native plants and communities.


Plant Biology ◽  
2010 ◽  
Vol 12 ◽  
pp. 129-139 ◽  
Author(s):  
O. Da Ines ◽  
W. Graf ◽  
K. I. Franck ◽  
A. Albert ◽  
J. B. Winkler ◽  
...  

1997 ◽  
Vol 122 (2) ◽  
pp. 285-289 ◽  
Author(s):  
Marc van Iersel

Mechanical conditioning can be used to control the height of vegetable and ornamental transplants. Previous research indicated that brushing plants increases cuticular water loss from detached leaves, which may be an indication of decreased drought resistance. This might decrease post-transplant survival of the plants. The objectives of this study were to determine the effect of brushing on growth and gas exchange by tomato (Lycopersicon esculentum Mill.) and quantify whole-plant water use during a slow dry-down period. Tomato plants were grown from seed in a greenhouse during Fall 1995. The brushing treatment started 11 days after seeding and consisted of 40 strokes, twice each day. After 39 days of treatment, brushing reduced height 32%, leaf area 34%, and shoot dry mass 29% compared to control plants. Brushing did not affect leaf gas exchange. Brushed plants had a higher stem water flux than control plants during the first 3 days of a 6-day dry-down period. Stem water flux was lower than that of control plants later in the cycle, presumably because brushed plants used more of the available water during the first 3 days. On the third day of the dry-down period, leaf conductance of brushed plants was 35% higher than that of control plants, resulting in a 10% higher transpiration rate per unit leaf area. Because brushed plants had less leaf area than controls, differences in whole-plant water use were small. Time to wilting was similar for the brushed and unbrushed plants (6 days after withholding water). It seems unlikely that brushing would have a major effect on drought tolerance of plants.


2021 ◽  
Author(s):  
Javier de la Casa ◽  
Adrià Barbeta ◽  
Asun Rodríguez-Uña ◽  
Lisa Wingate ◽  
Jérôme Ogée ◽  
...  

Abstract. Isotope-based approaches to study plant water sources rely on the assumption that root water uptake and within-plant water transport are non-fractionating processes. However, a growing number of studies have reported offsets between plant and source water stable isotope composition, for a wide range of ecosystems. These isotopic offsets can result in the erroneous attribution of source water used by plants and potential overestimations of groundwater uptake by the vegetation. We conducted a global meta-analysis to quantify the magnitude of these plant-source water isotopic offsets and explore whether their variability could be explained by either biotic or abiotic factors. Our database compiled 112 studies, spanning arctic to tropical biomes that reported the dual water isotope composition (δ2H and δ18O) of plant (stem) and source water, including soil water. We calculated 2H offsets in two ways: a line conditioned excess (LC-excess) that describes the 2H deviation from the local meteoric water line, and a soil water line conditioned excess (SW-excess), that describes the deviation from the soil water line, for each sampling campaign within each study. We tested for the effects of climate (air temperature and soil water content), soil class and plant traits (growth form, leaf habit, wood density and parenchyma fraction and mycorrhizal habit) on LC-excess and SW-excess. Globally, stem water was more depleted in 2H than soil water (SW-excess < 0) by 3.02 ± 0.65 ‰. In 95 % of the cases where SW-excess was negative, LC-excess was negative, indicating that the uptake of water from mobile pools was unlikely to explain the observed soil-plant water isotopic offsets. SW-excess was more negative in cold and wet sites, whereas it was more positive in warm sites. Soil class and plant traits did not have any significant effect on SW-excess. The climatic effects on SW-excess suggest that methodological artefacts are unlikely to be the sole cause of observed isotopic offsets. Instead, our results support the idea that these offsets are caused by isotopic heterogeneity within plant stems whose relative importance will depend on soil and plant water status and evaporative demand. Our results would imply that plant-source water isotopic offsets may lead to inaccuracies when using the isotopic composition of bulk stem water as a proxy to infer plant water sources.


Oecologia ◽  
2009 ◽  
Vol 161 (1) ◽  
pp. 15-24 ◽  
Author(s):  
Michael D. Cramer ◽  
Heidi-Jayne Hawkins ◽  
G. Anthony Verboom

Sign in / Sign up

Export Citation Format

Share Document