scholarly journals Growth, leaf morphology, water use and tissue water relations of Eucalyptus globulus clones in response to water deficit

2001 ◽  
Vol 21 (9) ◽  
pp. 599-607 ◽  
Author(s):  
P. Pita ◽  
J. A. Pardos
Agronomy ◽  
2019 ◽  
Vol 9 (3) ◽  
pp. 135 ◽  
Author(s):  
Carolin Weiler ◽  
Nikolaus Merkt ◽  
Jens Hartung ◽  
Simone Graeff-Hönninger

Climate change will lead to higher frequencies and durations of water limitations during the growing season, which may affect table grape yield. The aim of this experiment was to determine the variability among 3-year old table grape cultivars under the influence of prolonged water deficit during fruit development on gas exchange, growth, and water use efficiency. Six own rooted, potted table grape cultivars (cv. ‘Muscat Bleu’, ‘Fanny’, ‘Nero’, ‘Palatina’, ‘Crimson Seedless’ and ‘Thompson Seedless’) were subjected to three water deficit treatments (Control treatment with daily irrigation to 75% of available water capacity (AWC), moderate (50% AWC), and severe water deficit treatment (25% AWC)) for three consecutive years during vegetative growth/fruit development. Water deficit reduced assimilation, stomatal conductance, and transpiration, and increased water use efficiencies (WUE) with severity of water limitation. While leaf area and number of leaves were not affected by treatments in any of the tested cultivars, the response of specific leaf area to water deficit depended on the cultivar. Plant dry mass decreased with increasing water limitation. Overall, high variability of cultivars to gas exchange and water use efficiencies in response to water limitation was observed. ’Palatina’ was the cultivar having a high productivity (high net assimilation) and low water use (low stomatal conductance) and the cultivar ‘Fanny’ was characterized by the highest amount of total annual dry mass as well as the highest total dry mass production per water supplied during the experiment (WUEDM). Hence, ‘Fanny’ and ‘Palatina’ have shown to be cultivars able to cope with water limiting conditions and should be extensively tested in further studies.


2016 ◽  
Vol 402 (1-2) ◽  
pp. 191-209 ◽  
Author(s):  
Anabela A. Fernandes-Silva ◽  
Álvaro López-Bernal ◽  
Timóteo C. Ferreira ◽  
Francisco J. Villalobos

Hoehnea ◽  
2013 ◽  
Vol 40 (1) ◽  
pp. 181-190 ◽  
Author(s):  
Rodrigo Fazani Esteves Sanches ◽  
Emerson Alves da Silva

To evaluate the influence of different intensities of water deficit and rehydration on water relations and gas exchanges of Bauhinia forficata Link, plants were grown in a greenhouse for three months under the following water regimes: daily watered (control) and watered every 7 (7D) and 15 days (15D) returning to daily watering on 7D and 15D treatments at 75 days of the experiment. Aiming to evaluate short-term responses to re-hydration, plants of 7D and 15D treatments were re-watered 2 days before measurements and sampling was carried out at the 45th day of experiment. At fortnightly intervals (15, 30, 45, 60, 75, and 90 days) soil moisture (Usoil), leaf water potential (Ψwf), photosynthesis in response to photosynthetically active radiation (A × PPFD) to obtain the maximum net photosynthesis (Amax), and light saturation point (PARsat) were evaluated. The water deficit has affected water relations and photosynthesis with the lowest values observed in the treatments Usoil 7D, and 15D respectively, coinciding with the lowest Ψwf and Amax. Changes in PARsat in response to water deficit were observed showing mean values of 665, 275 and 254 µmol photons m-2 s-1 in control, 7D and 15D respectively. The return of daily watering after 75 days of experiment, promoted the recovery of Amax (7.8 and 9.6 µmol CO2 m-2 s-1) and PARsat (588 and 643 µmol photons m-2 s-1) in 7D and 15D respectively with values higher than control plants (4.7 µmol CO2 m-2 s-1 and 631 µmol photons m-2 s-1), suggesting a strong dependence of photosynthesis of Bauhinia forficata to the soil water availability.


2003 ◽  
Vol 23 (5) ◽  
pp. 335-343 ◽  
Author(s):  
M. R. Ngugi ◽  
D. Doley ◽  
M. A. Hunt ◽  
P. Dart ◽  
P. Ryan

2018 ◽  
pp. 155-160
Author(s):  
L Vishna Y Weerarathne ◽  
Wencheng Dong ◽  
Minghe Nie ◽  
Yan Wang ◽  
Ignacio F Lopez ◽  
...  

This paper outlines recent research studying within-population variation in selected New Zealand perennial ryegrass cultivars, for traits related to tolerance of summer moisture deficit. Two clonal replicates of 220 genotypes from ‘Grasslands Nui’ (Nui, n=50), ‘Grasslands Samson’ (Samson, n=80), and ‘Trojan’ (n=90) were exposed to 1 month of moisture deficit challenge, with plant water relations measurements performed to evaluate putative drought-response mechanisms. Water use of individual genotypes ranged from <100 to >1000 g water/g DM indicating large within-population variation for this trait. Mean water use efficiency (WUE) was for Nui, Samson, and Trojan, respectively, 424±16, 412±10, and 319±9 g water/g DW (P<0.001), suggesting that commercial plant breeding may have indirectly reduced water use in modern cultivars without specific focus on water relations. Principal component analysis indicated more negative osmotic potential may contribute to reduced water use while maintaining yield under water deficit, giving a potential focus for future breeding selection targeting summer water deficit tolerance.


Sign in / Sign up

Export Citation Format

Share Document