Differential response to water deficit stress and shade in two wheat (Triticum durum Desf.) cultivars: growth, water relations, osmolyte accumulation and photosynthetic pigments

2019 ◽  
Vol 51 (4) ◽  
Author(s):  
Fatma Gharbi ◽  
Asma Guizani ◽  
Lobna Zribi ◽  
Hela Ben Ahmed ◽  
Florent Mouillot
2010 ◽  
Vol 333 (3) ◽  
pp. 205-213 ◽  
Author(s):  
Nasreddine Yousfi ◽  
Inès Slama ◽  
Tahar Ghnaya ◽  
Arnould Savouré ◽  
Chedly Abdelly

2012 ◽  
Vol 152 (1) ◽  
pp. 104-118 ◽  
Author(s):  
M. DE A. SILVA ◽  
J. L. JIFON ◽  
J. A. G. DA SILVA ◽  
C. M. DOS SANTOS ◽  
V. SHARMA

SUMMARYThe relationships between physiological variables and sugarcane productivity under water deficit conditions were investigated in field studies during 2005 and 2006 in Weslaco, Texas, USA. A total of 78 genotypes and two commercial varieties were studied, one of which was drought-tolerant (TCP93-4245) and the other drought-sensitive (TCP87-3388). All genotypes were subjected to two irrigation regimes: a control well-watered treatment (wet) and a moderate water-deficit stress (dry) treatment for a period of 90 days. Maximum quantum efficiency of photosystem II (Fv/Fm), estimated chlorophyll content (SPAD index), leaf temperature (LT), leaf relative water content (RWC) and productivity were measured. The productivity of all genotypes was, on average, affected negatively; however, certain genotypes did not suffer significant reduction. Under water deficit, the productivity of the genotypes was positively and significantly correlated with Fv/Fm, SPAD index and RWC, while LT had a negative correlation. These findings suggest that genotypes exhibiting traits of high RWC values, high chlorophyll contents and high photosynthetic radiation use efficiency under low moisture availability should be targeted for selection and variety development in programmes aimed at improving sugarcane for drought prone environments.


PROTOPLASMA ◽  
2021 ◽  
Author(s):  
Piyanan Pipatsitee ◽  
Cattarin Theerawitaya ◽  
Rujira Tiasarum ◽  
Thapanee Samphumphuang ◽  
Harminder Pal Singh ◽  
...  

Author(s):  
Rajkumar Dhakar ◽  
M. A. Sarath Chandran ◽  
Shivani Nagar ◽  
V. Visha Kumari ◽  
A. V. M. Subbarao ◽  
...  

2014 ◽  
Vol 9 (8) ◽  
pp. 1934578X1400900 ◽  
Author(s):  
Lauren M. Schwartz ◽  
Andrew J. Wood ◽  
David J. Gibson

Panicum virgatum is a dominant, native, perennial species found in the tallgrass prairie. In this study, we report the biosynthesis and accumulation of trigonelline (TRG) in leaves of P. virgatum in response to water-deficit stress. Once established, half of the seedlings underwent a drought stress treatment while the other half were watered daily (control). Relative water content (RWC) and trigonelline (TRG) concentrations were determined. RWC showed an interaction between moisture treatment and time, in which upland cultivars had the highest mean RWC compared with the lowland cultivars. The moisture treatments showed a significant difference in TRG concentration across all P. virgatum cultivars, which ranged from 0.5–31.8 μg/gFW−1. There was a divergence in TRG accumulation between upland and lowland cultivars in relation to RWC. This study is the first to report TRG accumulation in the grass P. virgatum, and to test for differences in TRG with respect to water-deficit stress among cultivars. The effect of soil moisture levels on cultivars may be important in making an informed selection and the response of P. virgatum and other dominant grasses should be considered as a potential filter in tallgrass prairies for restoration. Physiological markers such as TRG and RWC can aid in this decision making process.


Sign in / Sign up

Export Citation Format

Share Document