Carbon allocation strategies and water uptake in young grafted and own-rooted hazelnut (Corylus avellana L.) Cultivars

2021 ◽  
Author(s):  
S Portarena ◽  
O Gavrichkova ◽  
E Brugnoli ◽  
A Battistelli ◽  
S Proietti ◽  
...  

Abstract In this study, grafted and own-rooted young hazelnut plants of three high-quality cultivars were cultivated in Central Italy to investigate possible differences in growth, fruit and flower production, and physiological processes encompassing water uptake, photosynthetic variables, and non-structural carbohydrates (NSC) allocation. Stable isotopes and photosynthetic measurements were used to study carbon and water fluxes in plants. For the first time an ecophysiological study was carried out to understand the seasonal growth dynamics of grafted plants in comparison with own-rooted plants. The own-rooted hazelnuts showed rapid aboveground development with large canopy volume, high amount of sprouts and earlier yield. The grafted plants showed greater belowground development with lower canopy volumes and lower yield. However, later, the higher growth rates of the canopy led these plants to achieve the same size as that of the own-rooted hazelnuts and to enter the fruit production phase. Different seasonal behavior in root water uptake and leaf photosynthetic-related variables were detected between the two types of plants. The grafted plants showed root development that allowed deeper water uptake than that of the own-rooted hazelnuts. Moreover, the grafted plants were characterized by a higher accumulation of carbohydrate reserves in their root tissues and by higher stomatal reactivity, determining a major plasticity in response to seasonal thermal variations.

2018 ◽  
Author(s):  
Emilie Joetzjer ◽  
Fabienne Maignan ◽  
Jérôme Chave ◽  
Daniel Goll ◽  
Ben Poulter ◽  
...  

Abstract. Amazonian forest plays a crucial role in regulating the carbon and water cycles in the global climate system. However, the representation of biogeochemical fluxes and forest structure in dynamic global vegetation models (DGVMs) remains challenging. This situation has considerable implications for modelling the state and dynamics of Amazonian forest. To address these limitations, we present an adaptation of the ORCHIDEE-CAN DGVM, a second-generation DGVM that explicitly models tree demography and canopy structure with an allometry-based carbon allocation scheme and accounts for hydraulic architecture in the soil-stem-leaf continuum. We use two versions of this DGVM: the first one (CAN) includes a new parameterization for Amazonian forest; the second one (CAN-RS) additionally includes a mechanistic root water uptake module, which models the hydraulic resistance of the water transfer from soil pores to roots. We compared the results with the simulation output of the big-leaf standard version of the ORCHIDEE DGVM (TRUNK) and with observations of turbulent energy and CO2 fluxes at flux tower locations, of carbon stocks and stand density at inventory plots and observation-based models of photosynthesis (GPP) and evapotranspiration (LE) across the Amazon basin. CAN-RS reproduced observed carbon and water fluxes and carbon stocks as well as TRUNK across Amazonia, both at local and at regional scales. In CAN-RS, water uptake by tree roots in the deepest soil layers during the dry season significantly improved the modelling of GPP and LE seasonal cycles, especially over the Guianan and Brazilian Shields. These results imply that explicit coupling of the water and carbon cycles improves the representation of biogeochemical cycles in Amazonia and their spatial variability. Representing the variation in the ecological functioning of Amazonia should be the next step to improve the performance and predictive ability of new generation DGVMs.


2000 ◽  
Vol 5 (11) ◽  
pp. 482-488 ◽  
Author(s):  
Robert B. Jackson ◽  
John S. Sperry ◽  
Todd E. Dawson

2013 ◽  
Vol 1 (No. 3) ◽  
pp. 85-98
Author(s):  
Dohnal Michal ◽  
Dušek Jaromír ◽  
Vogel Tomáš ◽  
Herza Jiří

This paper focuses on numerical modelling of soil water movement in response to the root water uptake that is driven by transpiration. The flow of water in a lysimeter, installed at a grass covered hillslope site in a small headwater catchment, is analysed by means of numerical simulation. The lysimeter system provides a well defined control volume with boundary fluxes measured and soil water pressure continuously monitored. The evapotranspiration intensity is estimated by the Penman-Monteith method and compared with the measured lysimeter soil water loss and the simulated root water uptake. Variably saturated flow of water in the lysimeter is simulated using one-dimensional dual-permeability model based on the numerical solution of the Richards’ equation. The availability of water for the root water uptake is determined by the evaluation of the plant water stress function, integrated in the soil water flow model. Different lower boundary conditions are tested to compare the soil water dynamics inside and outside the lysimeter. Special attention is paid to the possible influence of the preferential flow effects on the lysimeter soil water balance. The adopted modelling approach provides a useful and flexible framework for numerical analysis of soil water dynamics in response to the plant transpiration.


2018 ◽  
Vol 31 (4) ◽  
pp. 1062-1068
Author(s):  
Rayanne Maria Paula Ribeiro ◽  
José Ricardo Tavares de Albuquerque ◽  
Manoel Galdino dos Santos ◽  
Aurélio Paes Barros Júnior ◽  
Leilson Costa Grangeiro ◽  
...  

ABSTRACT Sesame is a plant with high morphological and physiological complexity, with great variability in growth habit. Quantitative growth analysis is an accessible and accurate tool for evaluating plant development and the contribution of different physiological processes to plant performance. In view of this, the purpose of this study was to evaluate the growth of sesame cultivars in two cropping seasons in the conditions of Mossoró-RN. Two experiments were conducted in Horta Didactics of UFERSA. The experimental delineation in each time was a randomized complete block design with four replications. The treatments were arranged in split plots where each experimental plot contained different sesame cultivars, CNPA G2, CNPA G3 and CNPA G4, and the subplots represented seven collection times, 21, 35, 49, 63, 77, 91 and 105 days after sowing (DAS). The growth of the sesame cultivars was slow at the beginning of the crop cycle, intensifying at the beginning of flowering (after 35 DAS). Among the physiological indexes studied, CNPA G4 cultivar was more efficient in relation to growth and varied depending on the cropping season.


Water ◽  
2019 ◽  
Vol 11 (3) ◽  
pp. 425 ◽  
Author(s):  
Fairouz Slama ◽  
Nessrine Zemni ◽  
Fethi Bouksila ◽  
Roberto De Mascellis ◽  
Rachida Bouhlila

Water scarcity and quality degradation represent real threats to economic, social, and environmental development of arid and semi-arid regions. Drip irrigation associated to Deficit Irrigation (DI) has been investigated as a water saving technique. Yet its environmental impacts on soil and groundwater need to be gone into in depth especially when using brackish irrigation water. Soil water content and salinity were monitored in a fully drip irrigated potato plot with brackish water (4.45 dSm−1) in semi-arid Tunisia. The HYDRUS-1D model was used to investigate the effects of different irrigation regimes (deficit irrigation (T1R, 70% ETc), full irrigation (T2R, 100% ETc), and farmer’s schedule (T3R, 237% ETc) on root water uptake, root zone salinity, and solute return flows to groundwater. The simulated values of soil water content (θ) and electrical conductivity of soil solution (ECsw) were in good agreement with the observation values, as indicated by mean RMSE values (≤0.008 m3·m−3, and ≤0.28 dSm−1 for soil water content and ECsw respectively). The results of the different simulation treatments showed that relative yield accounted for 54%, 70%, and 85.5% of the potential maximal value when both water and solute stress were considered for deficit, full. and farmer’s irrigation, respectively. Root zone salinity was the lowest and root water uptake was the same with and without solute stress for the treatment corresponding to the farmer’s irrigation schedule (273% ETc). Solute return flows reaching the groundwater were the highest for T3R after two subsequent rainfall seasons. Beyond the water efficiency of DI with brackish water, long term studies need to focus on its impact on soil and groundwater salinization risks under changing climate conditions.


2010 ◽  
Vol 97 (9) ◽  
pp. 1382-1388 ◽  
Author(s):  
Derblai Casaroli ◽  
Quirijn de Jong van Lier ◽  
Durval Dourado Neto

Soil Science ◽  
1994 ◽  
Vol 158 (2) ◽  
pp. 97-105 ◽  
Author(s):  
U. SCHMIDHALTER ◽  
H. M. SELIM ◽  
J. J. OERTLI

Sign in / Sign up

Export Citation Format

Share Document