scholarly journals Erratum: Discovery of divided RdRp sequences and a hitherto unknown genomic complexity in fungal viruses

2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Yuto Chiba ◽  
Sayoko Oiki ◽  
Takashi Yaguchi ◽  
Syun-ichi Urayama ◽  
Daisuke Hagiwara
2020 ◽  
Author(s):  
Yuto Chiba ◽  
Sayoko Oiki ◽  
Takashi Yaguchi ◽  
Syun-Ichi Urayama ◽  
Daisuke Hagiwara

Abstract By identifying variations in viral RNA genomes, cutting-edge metagenome technology has potential to reshape current concepts about the evolution of RNA viruses. This technology, however, cannot process low-homology genomic regions properly, leaving the true diversity of RNA viruses unappreciated. To overcome this technological limitation, we applied an advanced method, Fragmented and Primer-Ligated Double-stranded (ds) RNA Sequencing (FLDS), to screen RNA viruses from 155 fungal isolates, which allowed us to obtain complete viral genomes in a homology-independent manner. We created a high-quality catalog of 19 RNA viruses (12 viral species) that infect Aspergillus isolates. Among them, nine viruses were not detectable by the conventional methodology involving agarose gel electrophoresis of dsRNA, a hallmark of RNA virus infections. Segmented genome structures were determined in 42% of the viruses. Some RNA viruses had novel genome architectures; one contained a dual methyltransferase domain and another had a separated RNA-dependent RNA polymerase (RdRp) gene. A virus from a different fungal taxon (Pyricularia) had an RdRp sequence that was separated on different segments, suggesting that a divided RdRp is widely present among fungal viruses, despite the belief that all RNA viruses encode RdRp as a single gene. These findings illustrate the previously hidden diversity and evolution of RNA viruses, and prompt reconsideration of the structural plasticity of RdRp.


2020 ◽  
Vol 6 (2) ◽  
Author(s):  
Wen Wang ◽  
Xian-Dan Lin ◽  
Hai-Lin Zhang ◽  
Miao-Ruo Wang ◽  
Xiao-Qing Guan ◽  
...  

Abstract To better understand the genetic diversity, host associations and evolution of coronaviruses (CoVs) in China we analyzed a total of 696 rodents encompassing 16 different species sampled from Zhejiang and Yunnan provinces. Based on reverse transcriptase PCR-based CoV screening of fecal samples and subsequent sequence analysis of the RNA-dependent RNA polymerase gene, we identified CoVs in diverse rodent species, comprising Apodemus agrarius, Apodemus chevrieri, Apodemus latronum, Bandicota indica, Eothenomys cachinus, Eothenomys miletus, Rattus andamanensis, Rattus norvegicus, and Rattus tanezumi. CoVs were particularly commonplace in A. chevrieri, with a detection rate of 12.44 per cent (24/193). Genetic and phylogenetic analysis revealed the presence of three groups of CoVs carried by a range of rodents that were closely related to the Lucheng Rn rat CoV (LRNV), China Rattus CoV HKU24 (ChRCoV_HKU24), and Longquan Rl rat CoV (LRLV) identified previously. One newly identified A. chevrieri-associated virus closely related to LRNV lacked an NS2 gene. This virus had a similar genetic organization to AcCoV-JC34, recently discovered in the same rodent species in Yunnan, suggesting that it represents a new viral subtype. Notably, additional variants of LRNV were identified that contained putative non-structural (NS)2b genes located downstream of the NS2 gene that were likely derived from the host genome. Recombination events were also identified in the open reading frame (ORF) 1a gene of Lijiang-71. In sum, these data reveal the substantial genetic diversity and genomic complexity of rodent-borne CoVs, and extend our knowledge of these major wildlife virus reservoirs.


2021 ◽  
pp. 77-79
Author(s):  
Maximilian Schmutz ◽  
Sebastian Sommer

<b>Purpose:</b> In previous analyses of the MURANO study, fixed-duration venetoclax plus rituximab (VenR) resulted in improved progression-free survival (PFS) compared with bendamustine plus rituximab (BR) in patients with relapsed or refractory chronic lymphocytic leukemia (CLL). At the 4-year follow-up, we report long-term outcomes, response to subsequent therapies, and the predictive value of molecular and genetic characteristics. <b>Patients and methods:</b> Patients with CLL were randomly assigned to 2 years of venetoclax (VenR for the first six cycles) or six cycles of BR. PFS, overall survival (OS), peripheral-blood minimal residual disease (MRD) status, genomic complexity (GC), and gene mutations were assessed. <b>Results:</b> Of 389 patients, 194 were assigned to VenR and 195 to BR. Four-year PFS and OS rates were higher with VenR than BR, at 57.3% and 4.6% (hazard ratio [HR], 0.19; 95% CI, 0.14 to 0.25), and 85.3% and 66.8% (HR, 0.41; 95% CI, 0.26 to 0.65), respectively. Undetectable MRD (uMRD) at end of combination therapy (EOCT) was associated with superior PFS compared with low MRD positivity (HR, 0.50) and high MRD positivity (HR, 0.15). Patients in the VenR arm who received ibrutinib as their first therapy after progression (n = 12) had a reported response rate of 100% (10 of 10 evaluable patients); patients subsequently treated with a venetoclax-based regimen (n = 14) had a reported response rate of 55% (six of 11 evaluable patients). With VenR, the uMRD rate at end of treatment (EOT) was lower in patients with GC than in those without GC (<i>P</i> = 0.042); higher GC was associated with shorter PFS. Higher MRD positivity rates were seen with <i>BIRC3</i> and <i>BRAF</i> mutations at EOCT and with <i>TP53, NOTCH1, XPO1,</i> and <i>BRAF</i> mutations at EOT. <b>Conclusion:</b> Efficacy benefits with fixed-duration VenR are sustained and particularly durable in patients who achieve uMRD. Salvage therapy with ibrutinib after VenR achieved high response rates. Genetic mutations and GC affected MRD rates and PFS. <b>Trial registration:</b> ClinicalTrials.gov NCT02005471.


Sign in / Sign up

Export Citation Format

Share Document