scholarly journals Estimation of Crown Cover in Interior Ponderosa Pine Stands: Effects of Thinning and Prescribed Fire

2005 ◽  
Vol 20 (4) ◽  
pp. 240-246
Author(s):  
Nicholas Vaughn ◽  
Martin W. Ritchie

Abstract We evaluated the relationship between crown cover measured with a vertical sight tube and stand basal area per acre in treated (thinned, burned, and thinned and burned) and untreated interior ponderosa pine (Pinus ponderosa P. & C. Lawson) stands in northeastern California. Crown cover was significantly related to basal area at the plot level and stand level. In addition, the relationship was not affected by two extremely different thinning regimes. However, the predicted crown cover was generally lower, for a given level of basal area, in a recently thinned stand than in a stand that had not been recently thinned. Prescribed fire had no detectable effect on the relationship. The maximum measured value of stand level crown cover in untreated stands in this study was about 60 percent. West. J. Appl. For. 20(4): 240–246.

2008 ◽  
Vol 38 (5) ◽  
pp. 909-918 ◽  
Author(s):  
Jianwei Zhang ◽  
Martin W. Ritchie ◽  
William W. Oliver

A large-scale interior ponderosa pine ( Pinus ponderosa Dougl. ex P. & C. Laws.) study was conducted at the Blacks Mountain Experimental Forest in northeastern California. The primary purpose of the study was to determine the influence of structural diversity on the dynamics of interior pine forests at the landscape scale. High structural diversity (HiD) and low structural diversity (LoD) treatments were created with mechanical thinning on 12 main plots. Each plot was then split in half with one-half treated with prescribed fire. During the 5 year period after the treatments, the LoD treatments showed slightly higher periodic annual increments for basal area (BA) and significantly higher diameter increments than did the HiD treatments, although HiD carried twice as much BA as LoD did immediately after the treatments. Prescribed fire did not affect growth, but killed and (or) weakened some trees. No interaction between treatments was found for any variable. Stand density was reduced from the stands before treatments, but species composition did not change. Old dominant trees still grew and large snags were stable during the 5 year period. Treatments had minor impacts on shrub cover and numbers. These results suggest that ponderosa pine forest can be silviculturally treated to improve stand growth and health without sacrificing understory shrub diversity.


2005 ◽  
Vol 20 (1) ◽  
pp. 36-43 ◽  
Author(s):  
Kjerstin R. Skov ◽  
Thomas E. Kolb ◽  
Kimberly F. Wallin

Abstract Thinning and burning treatments based on forest conditions present before Euro-American settlement have been proposed to improve growth of ponderosa pine (Pinus ponderosa) in northern Arizona. We examined tree growth response to different levels of such treatments and compared growth response between old trees that established before Euro-American settlement (presettlement trees) and younger trees that established after Euro-American settlement (postsettlement trees). We made these comparisons for 3 years of posttreatment growth in northern Arizona stands subjected to four levels of thinning. Thinning treatments varied the number of postsettlement trees retained to replace dead presettlement trees. Thinning increased radial growth at breast height of postsettlement trees in all 3 years after treatment, and growth response was negatively correlated with posttreatment stand basal area. In contrast, growth of presettlement trees was not affected by thinning in most years, and there was no relationship between growth and posttreatment stand basal area. Application of the same thinning prescription to stands with different management history resulted in different posttreatment basal area and consequently different growth response to thinning for postsettlement trees. Our results show that growth of 80-year-old, postsettlement ponderosa pines is more responsive to restoration thinning than older presettlement trees, and provide guidelines for thinning levels needed to stimulate growth of presettlement trees. West. J. Appl. For. 20(1):36–43.


2008 ◽  
Vol 38 (4) ◽  
pp. 844-850 ◽  
Author(s):  
Gregory Peters ◽  
Anna Sala

Thinning and thinning followed by prescribed fire are common management practices intended to restore historic conditions in low-elevation ponderosa pine ( Pinus ponderosa Dougl. ex P. & C. Laws.) forests of the northern Rocky Mountains. While these treatments generally ameliorate the physiology and growth of residual trees, treatment-specific effects on reproductive output are not known. We examined reproductive output of second-growth ponderosa pine in western Montana 9 years after the application of four treatments: thinning, thinning followed by spring prescribed fire, thinning followed by fall prescribed fire, and unthinned control stands. Field and greenhouse observations indicated that reproductive traits vary depending on the specific management treatment. Cone production was significantly higher in trees from all actively managed stands relative to control trees. Trees subjected to prescribed fire produced cones with higher numbers of filled seeds than trees in unburned treatments. Seed mass, percentage germination, and seedling biomass were significantly lower for seeds from trees in spring burn treatments relative to all others and were generally higher in trees from fall burn treatments. We show for the first time that thinning and prescribed-burning treatments can influence reproductive output in ponderosa pine.


2003 ◽  
Vol 33 (5) ◽  
pp. 870-884 ◽  
Author(s):  
Rick G Kelsey ◽  
Gladwin Joseph

Sixteen days after a September wildfire, ethanol and water were measured in phloem and sapwood at breast height and the base of Pinus ponderosa Dougl. ex P. & C. Laws. with zero (control), moderate, heavy, and severe crown scorch. The quantity of ethanol increased with each level of injury, resulting in trees with severe scorch containing 15 and 53 times more phloem and sapwood ethanol, respectively, than controls. Ethanol concentrations in the sapwood and adjacent phloem were related, probably as a result of diffusion. Upward movement in xylem sap was most likely responsible for the relationship between sapwood ethanol concentrations at breast height and the stem base. As trees recovered from their heat injuries, the ethanol concentrations declined. In contrast, ethanol accumulated in dead trees that lost their entire crowns in the fire. Various bark and xylophagous beetles landed in greater numbers on fire-damaged trees than on controls the following spring and summer, suggesting that ethanol was being released to the atmosphere and influencing beetle behavior. Beetle landing was more strongly related to sapwood ethanol concentrations the previous September than in May. Sapwood ethanol measured 16 days after the fire was the best predictor of second-year mortality for trees with heavy and severe crown scorch.


2003 ◽  
Vol 33 (9) ◽  
pp. 1719-1726 ◽  
Author(s):  
C W Woodall ◽  
C E Fiedler ◽  
K S Milner

Intertree competition indices and effects were examined in 14 uneven-aged ponderosa pine (Pinus ponderosa var. scopulorum Engelm.) stands in eastern Montana. Location, height, diameter at breast height (DBH), basal area increment, crown ratio, and sapwood area were determined for each tree (DBH >3.8 cm) on one stem-mapped plot (0.2-0.4 ha) in each sample stand. Based on tree locations, various competition indices were derived for each sample tree and correlated with its growth efficiency by diameter class. In addition, trends in individual tree attributes by diameter class and level of surrounding competition were determined. For trees with a DBH <10 cm, growth efficiency was most strongly correlated with the sum of surrounding tree heights within 10.6 m. The index most highly correlated for larger trees was the sum of surrounding basal area within 6.1 m. Regardless of tree size, individual tree growth efficiency, basal area increment, and crown ratio all decreased under increasing levels of competition, with the effect more pronounced in smaller trees. These results suggest that individual trees in uneven-aged stands experience competition from differing sources at varying scales based on their size, with response to competition diminishing as tree size increases.


2008 ◽  
Vol 38 (7) ◽  
pp. 1797-1806 ◽  
Author(s):  
Chris P. Andersen ◽  
Donald L. Phillips ◽  
Paul T. Rygiewicz ◽  
Marjorie J. Storm

Root minirhizotron tubes were installed at two sites around three different age classes of ponderosa pine ( Pinus ponderosa Dougl. ex Laws.) to follow patterns of fine root (≤2 mm diameter) dynamics during a 4 year study. Both sites were old-growth forests until 1978, when one site was clear-cut and allowed to regenerate naturally. The other site had both intermediate-aged trees (50–60 years) and old-growth trees (>250 years old). Estimates of fine root standing crop were greatest around young trees and least around intermediate-aged trees. Root production was highly synchronized in all age classes, showing a single peak in late May – early June each year. Root production and mortality were proportional to standing root crop (biomass), suggesting that allocation to new root growth was proportional to root density regardless of tree age. The turnover index (mortality/maximum standing crop) varied from 0.62 to 0.89·year–1, indicating root life spans in excess of 1 year. It appears that young ponderosa pine stands have greater rates of fine root production than older stands but lose more fine roots each year through mortality. The results indicate that soil carbon may accumulate faster in younger than in older stands.


2008 ◽  
Vol 38 (5) ◽  
pp. 924-935 ◽  
Author(s):  
Christopher J. Fettig ◽  
Robert R. Borys ◽  
Stephen R. McKelvey ◽  
Christopher P. Dabney

Mechanical thinning and the application of prescribed fire are commonly used tools in the restoration of fire-adapted forest ecosystems. However, few studies have explored their effects on subsequent amounts of bark beetle caused tree mortality in interior ponderosa pine, Pinus ponderosa Dougl. ex P. & C. Laws. var. ponderosa. In this study, we examined bark beetle responses to creation of midseral (low diversity) and late-seral stages (high diversity) and the application of prescribed fire on 12 experimental units ranging in size from 76 to 136 ha. A total of 9500 (5.0% of all trees) Pinus and Abies trees died 2 years after treatment of which 28.8% (2733 trees) was attributed to bark beetle colonization. No significant difference in the mean percentage of trees colonized by bark beetles was found between low diversity and high diversity. The application of prescribed fire resulted in significant increases in bark beetle caused tree mortality (all species) and for western pine beetle, Dendroctonus brevicomis LeConte, mountain pine beetle, Dendroctonus ponderosae Hopkins, Ips spp., and fir engraver, Scolytus ventralis LeConte, individually. Approximately 85.6% (2339 trees) of all bark beetle caused tree mortality occurred on burned split plots. The implications of these and other results to sustainable forest management are discussed.


2013 ◽  
Vol 43 (4) ◽  
pp. 311-320 ◽  
Author(s):  
Jianwei Zhang ◽  
Martin W. Ritchie ◽  
Douglas A. Maguire ◽  
William W. Oliver

We analyzed 45 years of data collected from three ponderosa pine (Pinus ponderosa Douglas ex P. Lawson & C. Lawson) levels-of-growing-stock installations in Oregon (OR) and northern California (CA), USA, to determine the effect of stand density regimes on stand productivity and mortality. We found that periodic annual increment (PAI) of diameter, basal area (BA), volume, and aboveground dry mass were significantly related to stand density index (SDI) and stand age at start of the period; the quadratic trends varied among sites. Precipitation departure from the normal for each period explained a significant amount of residual variation in all PAI variables except diameter. BA production did not change significantly as SDI exceeded 270 trees·ha−1 at the OR sites and 320 trees·ha−1 at the CA site. Stand productivity was the highest at Elliot Ranch (CA) and the least at Blue Mountains (OR). A similar trend held in growth efficiency under lower stand densities (SDI < 600). Most of the mortality was caused by Dendroctonus bark beetles in stands that exceeded SDI of 500 trees·ha−1. Limiting SDI was about 900 trees·ha−1, although plots at Elliot Ranch reached much higher than that. The results demonstrate that silvicultural control of stand density can be a powerful tool for reducing bark beetle caused mortality without sacrificing stand productivity.


2012 ◽  
Vol 27 (1) ◽  
pp. 36-41 ◽  
Author(s):  
Alicia L. Reiner ◽  
Nicole M. Vaillant ◽  
Scott N. Dailey

Abstract The purpose of this study was to provide land managers with information on potential wildfire behavior and tree mortality associated with mastication and masticated/fire treatments in a plantation. Additionally, the effect of pulling fuels away from tree boles before applying fire treatment was studied in relation to tree mortality. Fuel characteristics and tree mortality data were gathered before and after treatments in a 25-year-old ponderosa pine (Pinus ponderosa C. Lawson) plantation. A random block design was used with three treatments plus a control at each of four blocks. Four plots were established as subsamples within each of the treatment and control sections of each block. Potential wildfire behavior for posttreatment fuel conditions was modeled for 90th and 97th percentile fire weather. Predicted rates of spread and flame lengths were higher for fuel conditions resulting from the mastication treatments than for the masticated/fire treatments or the controls. Torching and crowning indices indicated that higher windspeeds would be necessary to promote torching for areas treated with mastication/fire than for mastication or the controls. Tree mortality was 32 and 17% the first year after burning in masticated/fire and masticated/pull-back/fire plots, respectively, and 49 and 27% the second year. Our potential wildfire behavior results indicate that the risk of crown fire can be somewhat reduced by mastication and further reduced if mastication is followed up with prescribed fire to consume surface fuels. However, moderate levels of tree mortality seem inevitable when burning masticated fuels in a plantation and may only marginally be reduced by pulling fuels away from tree boles, which increases treatment costs.


1995 ◽  
Vol 10 (3) ◽  
pp. 91-94
Author(s):  
Darrell W. Ross

Abstract Second-growth ponderosa pine (Pinus ponderosa) stands with outbreak populations of the pandora moth (Coloradia pandora) were thinned from below removing about half of the basal area. Thinning had no effect on pandora moth pupal density or weight, or emerging adult density in the following generation. However, adult emergence and egg hatch occurred 7-10 days earlier in thinned plots compared with unthinned plots. Egg and larval densities on a foliage weight basis were not significantly different between thinned and unthinned plots. Thinning stands infested with pandora moth will not significantly affect the course of an outbreak for at least one generation. Timing of direct controls for the pandora moth should consider the effect of stand density on insect phenology. West. J. Appl. For. 10(3):91-94.


Sign in / Sign up

Export Citation Format

Share Document