scholarly journals The Lotus japonicus LjSym4 Gene Is Required for the Successful Symbiotic Infection of Root Epidermal Cells

2000 ◽  
Vol 13 (10) ◽  
pp. 1109-1120 ◽  
Author(s):  
Paola Bonfante ◽  
Andrea Genre ◽  
Antonella Faccio ◽  
Isabella Martini ◽  
Leif Schauser ◽  
...  

The role of the Lotus japonicus LjSym4 gene during the symbiotic interaction with Mesorhizobium loti and arbuscular mycorrhizal (AM) fungi was analyzed with two mutant alleles conferring phenotypes of different strength. Ljsym4-1 and Ljsym4-2 mutants do not form nodules with M. loti.Normal root hair curling and infection threads are not observed, while a nodC-dependent deformation of root hair tips indicates that nodulation factors are still perceived by Ljsym4 mutants. Fungal infection attempts on the mutants generally abort within the epidermis, but Ljsym4-1 mutants allow rare, successful, infection events, leading to delayed arbuscule formation. On roots of mutants homozygous for the Ljsym4-2 allele, arbuscule formation was never observed upon inoculation with either of the two AM fungi, Glomus intraradices or Gigaspora margarita. The strategy of epidermal penetration by G. margarita was identical for Ljsym4-2 mutants and the parental line, with appressoria, hyphae growing between two epidermal cells, penetration of epidermal cells through their anticlinal wall. These observations define a novel, genetically controlled step in AM colonization. Although rhizobia penetrate the tip of root hairs and AM fungi access an entry site near the base of epidermal cells, the LjSym4 gene is necessary for the appropriate response of this cell type to both microsymbionts. We propose that LjSym4 is required for the initiation or coordinated expression of the host plant cell's accommodation program, allowing the passage of both microsymbionts through the epidermis layer.

2006 ◽  
Vol 19 (12) ◽  
pp. 1444-1450 ◽  
Author(s):  
Fabien Lombardo ◽  
Anne B. Heckmann ◽  
Hiroki Miwa ◽  
Jillian A. Perry ◽  
Koji Yano ◽  
...  

During the symbiotic interaction between legumes and rhizobia, the host cell plasma membrane and associated plant cell wall invaginate to form a tunnel-like infection thread, a structure in which bacteria divide to reach the plant root cortex. We isolated four Lotus japonicus mutants that make infection pockets in root hairs but form very few infection threads after inoculation with Mesorhizobium loti. The few infection threads that did initiate in the mutants usually did not progress further than the root hair cell. These infection-thread deficient (itd) mutants were unaffected for early symbiotic responses such as calcium spiking, root hair deformation, and curling, as well as for the induction of cortical cell division and the arbuscular mycorrhizal symbiosis. Complementation tests and genetic mapping indicate that itd2 is allelic to Ljsym7, whereas the itd1, itd3, and itd4 mutations identified novel loci. Bacterial release into host cells did occur occasionally in the itd1, itd2, and itd3 mutants suggesting that some infections may succeed after a long period and that infection of nodule cells could occur normally if the few abnormal infection threads that were formed reached the appropriate nodule cells.


2006 ◽  
Vol 33 (8) ◽  
pp. 749 ◽  
Author(s):  
Jeremy Murray ◽  
Ryan Geil ◽  
Cameron Wagg ◽  
Bogumil Karas ◽  
Krzysztof Szczyglowski ◽  
...  

Mutant lines of Lotus japonicus (Regel) Larsen that show defects in nodulation as well as in mycorrhiza formation are valuable resources for studying the events required for the establishment of functional symbioses. In this study, 11 mutant lines derived from a screen for genetic suppressors of har1-1 hypernodulation were assessed quantitatively for their ability to form arbuscular mycorrhizal (AM) symbiosis. The presence of extraradical mycelia, appressoria, intraradical hyphae, arbuscules and vesicles were scored. Roots of the har1-1 parental line were heavily colonised by six weeks after inoculation with the AM fungus Glomus intraradices showing the typical Arum-type colonisation pattern. Five mutants lacked internal root colonisation with blocks either at the surface of epidermal cells or at the outer tangential wall of cortical cells. These AM– lines showed some differences in relation to the amount of extraradical hyphae, the number of appressoria, and the degree of abnormal appressorium morphology. Four mutants had internal root colonisation but at a lower level than the parental line. Two mutants showed no difference from the parental line. Results of this study provide additional genetic resources for studying the mechanism of root colonisation by AM fungi.


Development ◽  
1999 ◽  
Vol 126 (16) ◽  
pp. 3617-3628
Author(s):  
A.C. Timmers ◽  
M.C. Auriac ◽  
G. Truchet

In situ immunolocalization of tubulin revealed that important rearrangements occur during all the early symbiotic steps in the Medicago/R. meliloti symbiotic interaction. Microtubular cytoskeleton (MtC) reorganizations were observed in inner tissues, first in the pericycle and then in the inner cortex where the nodule primordium forms. Subsequently, major MtC changes occurred in outer tissues, associated with root hair activation and curling, the formation of preinfection threads (PITs) and the initiation and the growth of an infection network. From the observed sequence of MtC changes, we propose a model which aims to better define, at the histological level, the timing of the early symbiotic stages. This model suggests the existence of two opposite gradients of cell differentiation controlling respectively the formation of division centers in the inner cortex and plant preparation for infection. It implies that (i) MtC rearrangements occur in pericycle and inner cortex earlier than in the root hair, (ii) the infection process proceeds prior to the formation of the nodule meristem, (iii) the initial primordium prefigures the future zone II of the mature nodule and (iv) the nodule meristem derives from the nodule primordium. Finally, our data also strongly suggest that in alfalfa PIT differentiation, a stage essential for successful infection, requires complementary signaling additional to Nod factors.


2017 ◽  
Vol 30 (3) ◽  
pp. 194-204 ◽  
Author(s):  
Yasuyuki Kawaharada ◽  
Euan K. James ◽  
Simon Kelly ◽  
Niels Sandal ◽  
Jens Stougaard

Several hundred genes are transcriptionally regulated during infection-thread formation and development of nitrogen-fixing root nodules. We have characterized a set of Lotus japonicus mutants impaired in root-nodule formation and found that the causative gene, Ern1, encodes a protein with a characteristic APETALA2/Ethylene Responsive Factor (AP2/ERF) transcription-factor domain. Phenotypic characterization of four ern1 alleles shows that infection pockets are formed but root-hair infection threads are absent. Formation of root-nodule primordia is delayed and no normal transcellular infection threads are found in the infected nodules. Corroborating the role of ERN1 (ERF Required for Nodulation1) in nodule organogenesis, spontaneous nodulation induced by an autoactive CCaMK and cytokinin–induced nodule primordia were not observed in ern1 mutants. Expression of Ern1 is induced in the susceptible zone by Nod factor treatment or rhizobial inoculation. At the cellular level, the pErn1:GUS reporter is highly expressed in root epidermal cells of the susceptible zone and in the cortical cells that form nodule primordia. The genetic regulation of this cellular expression pattern was further investigated in symbiotic mutants. Nod factor induction of Ern1 in epidermal cells was found to depend on Nfr1, Cyclops, and Nsp2 but was independent of Nin and Nf-ya1. These results suggest that ERN1 functions as a transcriptional regulator involved in the formation of infection threads and development of nodule primordia and may coordinate these two processes.


2019 ◽  
Vol 99 (6) ◽  
pp. 897-904
Author(s):  
Danxia Ke ◽  
Kunpeng Peng

Increasing evidence suggests that Rho of plant (ROP) GTPases play important roles in the rhizobium–legume symbiotic nodulation, but the molecular mechanisms of their regulation in symbiosis remain poorly understood. In this study, we showed that ROP4 in Lotus japonicus (LjROP4) is involved in the symbiotic interaction between L. japonicus and Mesorhizobium loti. Tissue expression analysis showed that LjROP4 expressed highly in the root. Histochemical staining analysis showed that after rhizobia inoculation, GUS reporter activity increased in the root vascular bundle, root tip, and lateral root primordia. During nodule development, GUS activity was detected in the cortex of nodule primordia and young nodules. In the mature nodules, GUS activity was detected only in the vascular bundle. Compared with the control, the overexpression of ROP4 and ROP4-CA produced much more pronounced root hair swelling and curling induced by M. loti. The infection event and nodule number noticeably increased, which was consistent with this promotion of root hair deformation. Moreover, RNA interference of LjROP4 produced opposite phenotypes. These data suggest that LjROP4 is required for root hair deformation during rhizobial infection. Thus, our study provides important information about root hair deformation responses induced by nod factors in the early stages of symbiotic interaction.


2006 ◽  
Vol 19 (7) ◽  
pp. 801-810 ◽  
Author(s):  
Koji Yano ◽  
Myra L. Tansengco ◽  
Taihei Hio ◽  
Kuniko Higashi ◽  
Yoshikatsu Murooka ◽  
...  

Legume plants develop specialized root organs, the nodules, through a symbiotic interaction with rhizobia. The developmental process of nodulation is triggered by the bacterial microsymbiont but regulated systemically by the host legume plants. Using ethylmethane sulfonate mutagenesis as a tool to identify plant genes involved in symbiotic nodule development, we have isolated and analyzed five nodulation mutants, Ljsym74-3, Ljsym79-2, Ljsym79-3, Ljsym80, and Ljsym82, from the model legume Lotus japonicus. These mutants are defective in developing functional nodules and exhibit nitrogen starvation symptoms after inoculation with Mesorhizobium loti. Detailed observation revealed that infection thread development was aborted in these mutants and the nodules formed were devoid of infected cells. Mapping and complementation tests showed that Ljsym74-3, and Ljsym79-2 and Ljsym79-3, were allelic with reported mutants of L. japonicus, alb1 and crinkle, respectively. The Ljsym82 mutant is unique among the mutants because the infection thread was aborted early in its development. Ljsym74-3 and Ljsym80 were characterized as mutants with thick infection threads in short root hairs. Map-based cloning and molecular characterization of these genes will help us understand the genetic mechanism of infection thread development in L. japonicus.


2019 ◽  
Vol 32 (4) ◽  
pp. 401-412 ◽  
Author(s):  
Liujian Duan ◽  
Junqing Pei ◽  
Yaping Ren ◽  
Hao Li ◽  
Xiangzhen Zhou ◽  
...  

In almost all symbiotic interactions between rhizobia and leguminous plants, host flavonoid–induced synthesis of Nod factors in rhizobia is required to initiate symbiotic response in plants. In this study, we found that Lotus japonicus Nod factor receptor 5 (LjNFR5) might directly regulate flavonoid biosynthesis during symbiotic interaction with rhizobia. A yeast two-hybrid analysis revealed that a dihydroflavonol-4-reductase-like protein (LjDFL1) interacts with LjNFR5. The interaction between MtDFL1 and MtNFP, two Medicago truncatula proteins with homology to LjDFL1 and LjNFR5, respectively, was also shown, suggesting that interaction between these two proteins might be conserved in different legumes. LjDFL1 was highly expressed in root hairs and epidermal cells of root tips. Lotus ljdfl1 mutants and Medicago mtdfl1 mutants produced significantly fewer infection threads (ITs) than the wild-type control plants following rhizobial treatment. Furthermore, the roots of stable transgenic L. japonicus plants overexpressing LjDFL1 formed more ITs than control roots after exposure to rhizobia. These data indicated that LjDFL1 is a positive regulator of symbiotic signaling. However, the expression of LjDFL1 was suppressed by rhizobial treatment, suggesting that a negative feedback loop might be involved in regulation of the symbiotic response in L. japonicus.


Plant Methods ◽  
2021 ◽  
Vol 17 (1) ◽  
Author(s):  
Angus E. Rae ◽  
Vivien Rolland ◽  
Rosemary G. White ◽  
Ulrike Mathesius

Abstract Background The formation of infection threads in the symbiotic infection of rhizobacteria in legumes is a unique, fascinating, and poorly understood process. Infection threads are tubes of cell wall material that transport rhizobacteria from root hair cells to developing nodules in host roots. They form in a type of reverse tip-growth from an inversion of the root hair cell wall, but the mechanism driving this growth is unknown, and the composition of the thread wall remains unclear. High resolution, 3-dimensional imaging of infection threads, and cell wall component specific labelling, would greatly aid in our understanding of the nature and development of these structures. To date, such imaging has not been done, with infection threads typically imaged by GFP-tagged rhizobia within them, or histochemically in thin sections. Results We have developed new methods of imaging infection threads using novel and traditional cell wall fluorescent labels, and laser confocal scanning microscopy. We applied a new Periodic Acid Schiff (PAS) stain using rhodamine-123 to the labelling of whole cleared infected roots of Medicago truncatula; which allowed for imaging of infection threads in greater 3D detail than had previously been achieved. By the combination of the above method and a calcofluor-white counter-stain, we also succeeded in labelling infection threads and plant cell walls separately, and have potentially discovered a way in which the infection thread matrix can be visualized. Conclusions Our methods have made the imaging and study of infection threads more effective and informative, and present exciting new opportunities for future research in the area.


2007 ◽  
Vol 189 (23) ◽  
pp. 8741-8745 ◽  
Author(s):  
Alexandre Jamet ◽  
Karine Mandon ◽  
Alain Puppo ◽  
Didier Hérouart

ABSTRACT The symbiotic interaction between Medicago sativa and Sinorhizobium meliloti RmkatB ++ overexpressing the housekeeping catalase katB is delayed, and this delay is combined with an enlargement of infection threads. This result provides evidence that H2O2 is required for optimal progression of infection threads through the root hairs and plant cell layers.


2012 ◽  
Vol 78 (10) ◽  
pp. 3630-3637 ◽  
Author(s):  
Karol Krak ◽  
Martina Janoušková ◽  
Petra Caklová ◽  
Miroslav Vosátka ◽  
Helena Štorchová

ABSTRACTReal-time PCR in nuclear ribosomal DNA (nrDNA) is becoming a well-established tool for the quantification of arbuscular mycorrhizal (AM) fungi, but this genomic region does not allow the specific amplification of closely related genotypes. The large subunit of mitochondrial DNA (mtDNA) has a higher-resolution power, but mtDNA-based quantification has not been previously explored in AM fungi. We applied real-time PCR assays targeting the large subunit of mtDNA to monitor the DNA dynamics of two isolates ofGlomus intraradicessensu lato coexisting in the roots of medic (Medicago sativa). The mtDNA-based quantification was compared to quantification in nrDNA. The ratio of copy numbers determined by the nrDNA- and mtDNA-based assays consistently differed between the two isolates. Within an isolate, copy numbers of the nuclear and the mitochondrial genes were closely correlated. The two quantification approaches revealed similar trends in the dynamics of both isolates, depending on whether they were inoculated alone or together. After 12 weeks of cultivation, competition between the two isolates was observed as a decrease in the mtDNA copy numbers of one of them. The coexistence of two closely related isolates, which cannot be discriminated by nrDNA-based assays, was thus identified as a factor influencing the dynamics of AM fungal DNA in roots. Taken together, the results of this study show that real-time PCR assays targeted to the large subunit of mtDNA may become useful tools for the study of coexisting AM fungi.


Sign in / Sign up

Export Citation Format

Share Document