scholarly journals First Report of a Lettuce-Infecting Sequivirus in Chile

Plant Disease ◽  
2005 ◽  
Vol 89 (10) ◽  
pp. 1129-1129 ◽  
Author(s):  
R. Krause-Sakate ◽  
A. S. Jadão ◽  
A. C. Firmino ◽  
M. A. Pavan ◽  
F. M. Zerbini ◽  
...  

Sequiviruses are isometric aphidborne plant viruses. Dandelion yellow mosaic virus (DaYMV), genus Sequivirus, was isolated from dandelion and lettuce in Europe. Lettuce mottle virus (LeMoV), a putative sequivirus, is often found in mixed infections with Lettuce mosaic virus (LMV) in Brazil (3). DaYMV, LeMoV and LMV cause similar mosaics in field-grown lettuce. Differences in biology and sequence suggest that DaYMV and LeMoV are distinct species (2). Forty-two and 101 lettuce samples with mosaic symptoms collected from two locations near Santiago during a survey of lettuce viruses in Chile in 2002 and 2003, respectively, were analyzed for the presence of LeMoV using reverse transcription polymerase chain reaction (RT-PCR). Total RNA was extracted (1) and used for RT-PCR with the specific LeMoV primers pairs Lmo3 (5′ ACATGAGCACTAGTGAGG 3′) and Lmo4 (5′ AGATAGAGCCGTCT GGCG 3′) (2). One of the 42 and three of the 101 samples produced the expected 300-bp fragment. Isometric particles of 30 nm diameter, typical of a sequivirus, were visualized by transmission electron microscopy. These samples were tested using RT-PCR for the presence of LMV and Cucumber mosaic virus (CMV), but no mixed infections were observed. One isolate, Ch36, was reamplified with the degenerate primer pairs DALE 1 (5′ GARTTCAACATGCACGCCAG 3′) and DALE 2 (5′ TTTTTCTCCCCATYCGTCAT 3′) which amplify part of the putative replicase gene (2) and produced a 563-bp fragment that was cloned on pGEM-T Easy (Promega, Madison, WI) and sequenced. The Ch36 product (EMBL Accession No. AM039965) showed 97% amino acid identity with LeMoV from Brazil, 79% with DaYMV, 72% with the sequivirus Parsnip yellow fleck virus, and 34% with the waikavirus Maize chlorotic dwarf virus. To our knowledge, this is the first report of a sequivirus in field lettuce in Chile, and although the virus was found at low incidence, this report extends the range of LeMoV to the western side of the Cordillera de Los Andes. The impact of LeMoV needs to be further analyzed in Chile, Brazil, and possibly other South American countries. References: (1) Y. D. Bertheau et al. DNA amplification by polymerase chain reaction (PCR) 1998. In: Methods for the Detection and Quantification of Erwinia carotovora subsp. atroseptica on potatoes. M. C. N. Perombelon and J. M. van der Wolff, eds. Scott. Crop Res. Inst. Occasional Publ., Dundee, 1998. (2) A. S. Jadão. Caracterização parcial e desenvolvimento de oligonucleotídeos específicos para detecção de sequivirus infectando alface. Ph.D. thesis. FCA-UNESP-Botucatu, Brazil, 2004. (3) O. Stangarlin et al. Plant Dis. 84:490, 2000.

Viruses ◽  
2020 ◽  
Vol 12 (2) ◽  
pp. 246 ◽  
Author(s):  
Wycliff M. Kinoti ◽  
Narelle Nancarrow ◽  
Alison Dann ◽  
Brendan C. Rodoni ◽  
Fiona E. Constable

One hundred Prunus trees, including almond (P. dulcis), apricot (P. armeniaca), nectarine (P. persica var. nucipersica), peach (P. persica), plum (P. domestica), purple leaf plum (P. cerasifera) and sweet cherry (P. avium), were selected from growing regions Australia-wide and tested for the presence of 34 viruses and three viroids using species-specific reverse transcription-polymerase chain reaction (RT-PCR) or polymerase chain reaction (PCR) tests. In addition, the samples were tested using some virus family or genus-based RT-PCR tests. The following viruses were detected: Apple chlorotic leaf spot virus (ACLSV) (13/100), Apple mosaic virus (ApMV) (1/100), Cherry green ring mottle virus (CGRMV) (4/100), Cherry necrotic rusty mottle virus (CNRMV) (2/100), Cherry virus A (CVA) (14/100), Little cherry virus 2 (LChV2) (3/100), Plum bark necrosis stem pitting associated virus (PBNSPaV) (4/100), Prune dwarf virus (PDV) (3/100), Prunus necrotic ringspot virus (PNRSV) (52/100), Hop stunt viroid (HSVd) (9/100) and Peach latent mosaic viroid (PLMVd) (6/100). The results showed that PNRSV is widespread in Prunus trees in Australia. Metagenomic high-throughput sequencing (HTS) and bioinformatics analysis were used to characterise the genomes of some viruses that were detected by RT-PCR tests and Apricot latent virus (ApLV), Apricot vein clearing associated virus (AVCaV), Asian Prunus Virus 2 (APV2) and Nectarine stem pitting-associated virus (NSPaV) were also detected. This is the first report of ApLV, APV2, CGRMV, CNRNV, LChV1, LChV2, NSPaV and PBNSPaV occurring in Australia. It is also the first report of ASGV infecting Prunus species in Australia, although it is known to infect other plant species including pome fruit and citrus.


Plant Disease ◽  
2003 ◽  
Vol 87 (9) ◽  
pp. 1150-1150 ◽  
Author(s):  
H. Reichel ◽  
A. K. Martínez ◽  
J. A. Arroyave ◽  
R. Sedano ◽  
F. J. Morales ◽  
...  

Plantains (Musa AAB) are important sources of food and income for millions of people in Colombia and other developing countries. Colombia is the largest producer of plantains (2) and the third largest exporter of bananas in the world. In 2001, plants of ‘Dominico-Hartón’ plantain showing mild chlorotic streak symptoms were observed in northwestern Colombia. Electron microscopy of symptomatic tissue extracts revealed the presence of filamentous virus-like particles approximately 800 nm long. Immunocapture reverse-transcription polymerase chain reaction was performed to test for the presence of Banana mild mosaic virus (BanMMV) as described by J. E. Thomas (unpublished, Queensland Department of Primary Industries, Australia) and Sharman et al. (3). For polymerase chain reaction (PCR), the upstream primer No. 193 (5′-CAC TTA GGT TTG TGT GAT GT-3′) (designed in this study by using the computer Program DNAMAN Version 4.13) and the downstream primer Poty1 (5′-GGA TCC CGG GTT TTT TTT TTT TTT TTT V-3′) (1,3; J. E. Thomas, unpublished, Queensland Department of Primary Industries, Australia) were used. Amplification products of the expected size (approximately 900 bp) were obtained and sequenced after cloning in a pCR2.1 plasmid vector. Analyses of nucleic acid sequences using the international sequence databases and the BLAST program yielded nucleotide and amino acid sequence similarities of 80 to 83% and 90 to 92%, respectively, with an Australian isolate of BanMMV (GenBank Accession No. AF314662). The coat protein (CP) gene of the Colombian BanMMV isolate consists of 717 nucleotides. When the CP of the Colombian BanMMV isolates (GenBank Accession Nos. AY319331, AY319332, and AY319333) was compared with the CP of the Australian isolate, a highly variable region was observed in the N-terminus region. To our knowledge, this is the first report of BanMMV isolated from plantains in Colombia and the presence of molecular variability in the CP of BanMMV isolates. BanMMV has been found in Colombia associated with Banana streak virus and Cucumber mosaic virus in plantain. References: (1) A. Gibbs and A. Mackenzie. J. Virol.Methods 63:9, 1997 (2) N. S. Price. Infomusa 8(2):26, 1999. (3) M. Sharman et al. J. Virol. Methods 89:75, 2000.


Plant Disease ◽  
2012 ◽  
Vol 96 (9) ◽  
pp. 1384-1384 ◽  
Author(s):  
R. A. C. Jones ◽  
D. Real ◽  
S. J. Vincent ◽  
B. E. Gajda ◽  
B. A. Coutts

Tedera (Bituminaria bituminosa (L.) C.H. Stirton vars albomarginata and crassiuscula) is being established as a perennial pasture legume in southwest Australia because of its drought tolerance and ability to persist well during the dry summer and autumn period. Calico (bright yellow mosaic) leaf symptoms occurred on occasional tedera plants growing in genetic evaluation plots containing spaced plants at Newdegate in 2007 and Buntine in 2010. Alfalfa mosaic virus (AlMV) infection was suspected as it often causes calico in infected plants (1,2) and infects perennial pasture legumes in local pastures (1,3). Because AlMV frequently infects Medicago sativa (alfalfa) in Australia and its seed stocks are commonly infected (1,3), M. sativa buffer rows were likely sources for spread by aphids to healthy tedera plants. When leaf samples from plants with typical calico symptoms from Newdegate (2007) and Buntine (2010) were tested by ELISA using poyclonal antisera to AlMV, Bean yellow mosaic virus (BYMV) and Cucumber mosaic virus (CMV), only AlMV was detected. When leaf samples from 864 asymptomatic spaced plants belonging to 34 tedera accessions growing at Newdegate and Mount Barker in 2010 were tested by ELISA, no AlMV, BYMV, or CMV were detected, despite presence of M. sativa buffer rows. A culture of AlMV isolate EW was maintained by serial planting of infected seed of M. polymorpha L. (burr medic) and selecting seed-infected seedlings (1,3). Ten plants each of 61 accessions from the local tedera breeding program were grown at 20°C in an insect-proof air conditioned glasshouse. They were inoculated by rubbing leaves with infective sap containing AlMV-EW or healthy sap (five plants each) using Celite abrasive. Inoculations were always done two to three times to the same plants. When both inoculated and tip leaf samples from each plant were tested by ELISA, AlMV was detected in 52 of 305 AlMV-inoculated plants belonging to 36 of 61 accessions. Inoculated leaves developed local necrotic or chlorotic spots or blotches, or symptomless infection. Systemic invasion was detected in 20 plants from 12 accessions. Koch's postulates were fulfilled in 12 plants from nine accessions (1 to 2 of 5 plants each), obvious calico symptoms developing in uninoculated leaves, and AlMV being detected in symptomatic samples by ELISA, inoculation of sap to diagnostic indicator hosts (2) and RT-PCR with AlMV CP gene primers. Direct RT-PCR products were sequenced and lodged in GenBank. When complete nucleotide CP sequences (666 nt) of two isolates from symptomatic tedera samples and two from alfalfa (Aq-JX112758, Hu-JX112759) were compared with that of AlMV-EW, those from tedera and EW were identical (JX112757) but had 99.1 to 99.2% identities to the alfalfa isolates. JX112757 had 99.4% identity with Italian tomato isolate Y09110. Systemically infected tedera foliage sometimes also developed vein clearing, mosaic, necrotic spotting, leaf deformation, leaf downcurling, or chlorosis. Later-formed leaves sometimes recovered, but plant growth was often stunted. No infection was detected in the 305 plants inoculated with healthy sap. To our knowledge, this is the first report of AlMV infecting tedera in Australia or elsewhere. References: (1) B. A. Coutts and R. A. C. Jones. Ann. Appl. Biol. 140:37, 2002. (2) E. M. J. Jaspars and L. Bos. Association of Applied Biologists, Descriptions of Plant Viruses No. 229, 1980. (3) R. A. C. Jones. Aust. J. Agric. Res. 55:757, 2004.


Sign in / Sign up

Export Citation Format

Share Document