scholarly journals Identification of Leaf Rust Resistance Genes in Chinese Common Wheat Cultivars

Plant Disease ◽  
2017 ◽  
Vol 101 (10) ◽  
pp. 1729-1737 ◽  
Author(s):  
Takele Weldu Gebrewahid ◽  
Zhan-Jun Yao ◽  
Xiao-Cui Yan ◽  
Pu Gao ◽  
Zai-Feng Li

Puccinia triticina Eriks. (Pt), the causal agent of wheat (Triticum aestivum L.) leaf rust, is the most widespread disease of common wheat worldwide. In the present study, 83 wheat cultivars from three provinces of China and 36 tester lines with known leaf rust resistance (Lr) genes were inoculated in the greenhouse with 18 Pt pathotypes to identify seedling effective Lr genes. Field tests were also performed to characterize slow leaf rusting responses at the adult plant growth stage in Baoding and Zhoukou in the 2014–15 and 2015–16 cropping seasons. Twelve Lr genes, viz. Lr1, Lr26, Lr3ka, Lr11, Lr10, Lr2b, Lr13, Lr21, Lr34, Lr37, Lr44, and Lr46 either singly or in combination were identified in 41 cultivars. Known Lr genes were not detected in the remaining 42 cultivars. The most commonly identified resistance genes were Lr26 (20 cultivars), Lr46 (18 cultivars), and Lr1 (eight cultivars). Less frequently detected genes included Lr13, Lr34, and Lr37 (each present in four cultivars), Lr10 (three cultivars), and Lr3ka and Lr44 (each in two cultivars). Evidence for the presence of genes Lr11, Lr2b, and Lr21 (each in one cultivar) was also obtained. Seventeen cultivars were found to have slow rusting resistance in both field growing seasons.

Plant Disease ◽  
2001 ◽  
Vol 85 (2) ◽  
pp. 155-158 ◽  
Author(s):  
J. A. Kolmer

In 1998, leaf rust of wheat (Triticum aestivum), caused by Puccinia triticina, was widespread throughout the prairies of western Canada. Warm summer temperatures with frequent dew periods favored spread of the disease in wheat fields in Manitoba and Saskatchewan. The Canada Prairie Spring wheat cultivars (AC Vista, AC Foremost, AC Crystal) were susceptible to leaf rust, while the bread wheat cultivars with leaf rust resistance genes Lr16 and Lr13 or Lr34 (AC Majestic, AC Domain, AC Barrie) had high to moderate levels of leaf rust infections. Bread wheat cultivars AC Cora, AC Minto, Pasqua, and McKenzie had trace to low levels of leaf rust infection. Thirty-four virulence phenotypes of P. triticina were identified on 16 Thatcher lines, which are near-isogenic for leaf rust resistance genes. Phenotypes with virulence to Lr16 increased to 25% of isolates in Manitoba and Saskatchewan in 1998. Forty-three isolates were also tested for virulence to plants with the adult plant resistance genes Lr12, Lr13, Lr34, and Lr13,34. Most isolates had virulence to Lr12 and Lr13. All isolates had lower infection type on adult plants with Lr34 compared with Thatcher.


Plant Disease ◽  
2020 ◽  
Vol 104 (9) ◽  
pp. 2354-2361
Author(s):  
Takele Weldu Gebrewahid ◽  
Pei-pei Zhang ◽  
Zhan-jun Yao ◽  
Zai-feng Li ◽  
Da-qun Liu

Wheat leaf rust, caused by Puccinia triticina (Pt), is a widespread disease of bread wheat worldwide. In the present study, 50 wheat cultivars from Ethiopia and 34 differential lines, mostly near-isogenic lines (NILs) in the background of Thatcher with known resistance genes to leaf rust (Lr), were tested with 14 Pt races in the greenhouse to postulate Lr genes at the seedling stage. Field experiments were also conducted to identify adult plant responses to leaf rust in Baoding in the 2017–2018 and 2018–2019 growing seasons and in Zhoukou in the 2018–2019 growing season. Thirteen Lr genes (Lr1, Lr18, Lr3ka, Lr15, Lr26, Lr20, Lr14a, Lr30, Lr2a, Lr11, Lr34, Lr46, and Lr68) either singly or in combination were found in 39 cultivars. Known Lr genes were not present in the remaining 11 cultivars. Lr1 and Lr46, each in 13 cultivars, and Lr34 in 12 cultivars were the most commonly identified resistance genes. Less frequently identified genes included Lr26 (five cultivars); Lr30 and Lr18 (each present in four cultivars); Lr15, Lr3ka, and Lr2a (each identified in three cultivars); and Lr68 (two cultivars). Evidence for the existence of Lr11, Lr20, and Lr14a (each in one cultivar) was also obtained. Twenty-one cultivars were found to have slow rusting resistance to leaf rust in the field tests. The results should be valuable for cultivar selection with combinations of effective Lr genes and used in breeding new cultivars with improved resistance to leaf rust in Ethiopia and China.


Plant Disease ◽  
2020 ◽  
Vol 104 (10) ◽  
pp. 2669-2680
Author(s):  
Hui Wu ◽  
Zhanhai Kang ◽  
Xing Li ◽  
Yanyan Li ◽  
Yi Li ◽  
...  

Leaf rust is an important wheat disease that is a significant hindrance for wheat production in most areas of the world. Breeding resistant cultivars can effectively and economically control the disease. In the present study, a wheat collection consisting of 100 cultivars from China and 18 improved germplasms from global landrace donors together with 36 known single Lr gene lines were tested with 20 strains of Puccinia triticina Eriks. in the seedling stage to postulate the Lr gene in the cultivars and germplasms. In addition, 12 diagnostic molecular markers specific to 10 Lr genes were used to detect the presence of the Lr genes in the wheat collection. Resistance to leaf rust of these cultivars at the adult plant stage was tested in fields under natural infection during the 2016 to 2018 cropping seasons in Baoding, Hebei Province. The gene postulation combined with molecular marker detection showed that six Lr genes (Lr1, Lr26, Lr33, Lr34, Lr45, and Lr46) were identified in 44 wheat accessions, including 37 cultivars and seven improved germplasms. Among the 44 wheat accessions postulated with Lr genes, Lr1 was present in four accessions, Lr26 in 12 accessions, Lr33 in two accessions, Lr34 in 14 accessions, Lr45 in three accessions, and Lr46 in 16 accessions. In the collection of 118 cultivars/germplasms, 34 wheat lines displayed adult-plant resistance carrying Lr34, Lr46, and/or underdetermined genes. Therefore, a high level of leaf rust resistance can be achieved through the combination of all-stage resistance and adult-plant resistance genes together in wheat cultivars.


2014 ◽  
Vol 104 (12) ◽  
pp. 1322-1328 ◽  
Author(s):  
Alexander Loladze ◽  
Dhouha Kthiri ◽  
Curtis Pozniak ◽  
Karim Ammar

Leaf rust, caused by Puccinia triticina, is one of the main fungal diseases limiting durum wheat production. This study aimed to characterize previously undescribed genes for leaf rust resistance in durum wheat. Six different resistant durum genotypes were crossed to two susceptible International Maize and Wheat Improvement Center (CIMMYT) lines and the resulting F1, F2, and F3 progenies were evaluated for leaf rust reactions in the field and under greenhouse conditions. In addition, allelism tests were conducted. The results of the study indicated that most genotypes carried single effective dominant or recessive seedling resistance genes; the only exception to this was genotype Gaza, which carried one adult plant and one seedling resistance gene. In addition, it was concluded that the resistance genes identified in the current study were neither allelic to LrCamayo or Lr61, nor were they related to Lr3 or Lr14a, the genes that already are either ineffective or are considered to be vulnerable for breeding purposes. A complicated allelic or linkage relationship between the identified genes is discussed. The results of the study will be useful for breeding for durable resistance by creating polygenic complexes.


Plant Disease ◽  
2004 ◽  
Vol 88 (10) ◽  
pp. 1127-1133 ◽  
Author(s):  
L. M. Oelke ◽  
J. A. Kolmer

Leaf rust, caused by Puccinia triticina Eriks., is the most common disease of wheat (Triticum aestivum L.) in the United States and worldwide. The objective of this study was to characterize seedling and adult plant leaf rust resistance in hard red spring wheat cultivars grown in Minnesota, North Dakota, and South Dakota, and postulate the identity of the seedling leaf rust resistance genes in the cultivars. Twenty-six cultivars, near-isogenic lines of Thatcher wheat that differ for single leaf rust resistance genes, and three wheat cultivars with known leaf rust resistance genes, were tested with 11 different isolates of leaf rust collected from the United States and Canada. The leaf rust infection types produced on seedling plants of the cultivars in greenhouse tests were compared with the infection types produced by the same isolates on the Thatcher near-isogenic lines to postulate which seedling leaf rust resistance genes were present. Seedling leaf rust resistance genes Lr1, Lr2a, Lr10, Lr16, Lr21, and Lr24 were postulated to be present in spring wheat cultivars. Seedling genes Lr3, Lr14a, and Lr23 likely were present in some cultivars but could not be clearly identified in this study. Most of the cultivars had some level of adult plant leaf rust resistance, most likely due to Lr34. Cultivars that had seedling resistance genes Lr1, Lr2a, Lr10, or Lr16 had poor to intermediate levels of leaf rust resistance in field plots. Cultivars with combinations of seedling resistance genes Lr16 and Lr24 with additional adult plant resistance were highly resistant to leaf rust.


Plant Disease ◽  
2010 ◽  
Vol 94 (1) ◽  
pp. 45-53 ◽  
Author(s):  
Z. F. Li ◽  
X. C. Xia ◽  
Z. H. He ◽  
X. Li ◽  
L. J. Zhang ◽  
...  

Identification of resistance genes is important for developing leaf rust resistant wheat (Triticum aestivum) cultivars. A total of 102 Chinese winter wheat cultivars and advanced lines were inoculated with 24 pathotypes of Puccinia triticina for postulation of leaf rust resistance genes effective at the seedling stage. These genotypes were also planted in the field for characterization of slow rusting responses to leaf rust in the 2006–07 and 2007–08 cropping seasons. Fourteen leaf rust resistance genes—Lr1, Lr2a, Lr3bg, Lr3ka, Lr14a, Lr16, Lr17a, Lr18, Lr20, Lr23, Lr24, Lr26, Lr34, and LrZH84—either singly or in combinations, were postulated in 65 genotypes, whereas known resistance genes were not identified in the other 37 accessions. Resistance gene Lr26 was present in 44 accessions. Genes Lr14a and Lr34 were each detected in seven entries. Lr1 and Lr3ka were each found in six cultivars, and five lines possessed Lr16. Lr17a and Lr18 were each identified in four lines. Three cultivars were postulated to possess Lr3bg. Genes Lr20, Lr24, and LrZH84 were each present in two cultivars. Each of the genes Lr2a and Lr23 may exist in one line. Fourteen genotypes showed slow leaf rusting resistance in two cropping seasons.


Plants ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 1378
Author(s):  
Mohamed A. M. Atia ◽  
Eman A. El-Khateeb ◽  
Reem M. Abd El-Maksoud ◽  
Mohamed A. Abou-Zeid ◽  
Arwa Salah ◽  
...  

Wheat is a major nutritional cereal crop that has economic and strategic value worldwide. The sustainability of this extraordinary crop is facing critical challenges globally, particularly leaf rust disease, which causes endless problems for wheat farmers and countries and negatively affects humanity’s food security. Developing effective marker-assisted selection programs for leaf rust resistance in wheat mainly depends on the availability of deep mining of resistance genes within the germplasm collections. This is the first study that evaluated the leaf rust resistance of 50 Egyptian wheat varieties at the adult plant stage for two successive seasons and identified the absence/presence of 28 leaf rust resistance (Lr) genes within the studied wheat collection. The field evaluation results indicated that most of these varieties demonstrated high to moderate leaf rust resistance levels except Gemmeiza 1, Gemmeiza 9, Giza162, Giza 163, Giza 164, Giza 165, Sids 1, Sids 2, Sids 3, Sakha 62, Sakha 69, Sohag 3 and Bany Swif 4, which showed fast rusting behavior. On the other hand, out of these 28 Lr genes tested against the wheat collection, 21 Lr genes were successfully identified. Out of 15 Lr genes reported conferring the adult plant resistant or slow rusting behavior in wheat, only five genes (Lr13, Lr22a, Lr34, Lr37, and Lr67) were detected within the Egyptian collection. Remarkedly, the genes Lr13, Lr19, Lr20, Lr22a, Lr28, Lr29, Lr32, Lr34, Lr36, Lr47, and Lr60, were found to be the most predominant Lr genes across the 50 Egyptian wheat varieties. The molecular phylogeny results also inferred the same classification of field evaluation, through grouping genotypes characterized by high to moderate leaf rust resistance in one cluster while being highly susceptible in a separate cluster, with few exceptions.


2022 ◽  
Vol 12 ◽  
Author(s):  
Firdissa E. Bokore ◽  
Ron E. Knox ◽  
Colin W. Hiebert ◽  
Richard D. Cuthbert ◽  
Ron M. DePauw ◽  
...  

The hexaploid spring wheat cultivar, Carberry, was registered in Canada in 2009, and has since been grown over an extensive area on the Canadian Prairies. Carberry has maintained a very high level of leaf rust (Puccinia triticina Eriks.) resistance since its release. To understand the genetic basis of Carberry’s leaf rust resistance, Carberry was crossed with the susceptible cultivar, Thatcher, and a doubled haploid (DH) population of 297 lines was generated. The DH population was evaluated for leaf rust in seven field environments at the adult plant stage. Seedling and adult plant resistance (APR) to multiple virulence phenotypes of P. triticina was evaluated on the parents and the progeny population in controlled greenhouse studies. The population was genotyped with the wheat 90 K iSelect single nucleotide polymorphism (SNP) array, and quantitative trait loci (QTL) analysis was performed. The analysis using field leaf rust response indicated that Carberry contributed nine QTL located on chromosomes 1B, 2B (2 loci), 2D, 4A, 4B, 5A, 5B, and 7D. The QTL located on 1B, 2B, 5B, and 7D chromosomes were observed in two or more environments, whereas the remainder were detected in single environments. The resistance on 1B, detected in five environments, was attributed to Lr46 and on 7D, detected in seven environments to Lr34. The first 2B QTL corresponded with the adult plant gene, Lr13, while the second QTL corresponded with Lr16. The seedling analysis showed that Carberry carries Lr2a, Lr16, and Lr23. Five epistatic effects were identified in the population, with synergistic interactions being observed for Lr34 with Lr46, Lr16, and Lr2a. The durable rust resistance of Carberry is attributed to Lr34 and Lr46 in combination with these other resistance genes, because the resistance has remained effective even though the P. triticina population has evolved virulent to Lr2a, Lr13, Lr16, and Lr23.


2008 ◽  
Vol 117 (3) ◽  
pp. 307-312 ◽  
Author(s):  
U. K. Bansal ◽  
M. J. Hayden ◽  
B. P. Venkata ◽  
R. Khanna ◽  
R. G. Saini ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document