scholarly journals First Report of Pepper vein yellows virus Infecting Hot Pepper in Sudan

Plant Disease ◽  
2014 ◽  
Vol 98 (10) ◽  
pp. 1446-1446 ◽  
Author(s):  
A. Alfaro-Fernández ◽  
E. E. ElShafie ◽  
M. A. Ali ◽  
O. O. A. El Bashir ◽  
M. C. Córdoba-Sellés ◽  
...  

In two successive winters (2009 and 2010), 14 hot pepper (Capsicum annuum) samples showing unusual symptoms were surveyed in permanently irrigated seasonal vegetable gardens along the Blue Nile in central Sudan (specifically in Gezira State). Symptoms included leaf curling, leaf deformation, reduced leaf size, leaf puckering, interveinal yellowing, vein clearing, or yellow patches. Total RNA was extracted from symptomatic leaves and analyzed by reverse transcription (RT)-PCR with degenerate primer pairs that amplify different viral species within the family Luteoviridae (1). Amplification of a 340-bp fragment of the coat protein gene (CP) was obtained in all the collected samples analyzed. The amplified fragments were purified and sequenced (Accession Nos. KC685313 to 26), showing 99, 97, and 95 to 99% nucleotide identities to Pepper yellows virus (PYV, accession no. FN600344 from Turkey), Pepper vein yellows virus (PeVYV, AB594828 from Japan) and Pepper yellow leaf curl virus (PYLCV, HM439608 from Israel), respectively. These three viruses belong to the genus Polerovirus and are considered synonyms of the same virus species PeVYV described with those names in different countries (3). Two samples were also tested by RT-PCR with the general Polerovirus primer pair Pol-G-F and Pol-G-R, which amplified a 1.1-kb product spanning the 3′ half of the RNA-dependent RNA polymerase (RdRp) to the 5′ half of CP and movement protein (2). The amplified fragments (KC692834 and KC692833) showed 97, 96, and 95% nt identity with PYV (FN600344), PeVYV (JX427533), and PYLCV (HM439608), respectively. The presence of the recently described Polerovirus PeVYV is the first report of detection in pepper in Sudan. PeVYV has recently been identified in seven other countries (India, Indonesia, Mali, the Philippines, Spain, Taiwan, and Thailand) and on one new host, Solanum nigrum, which suggests this new Polerovirus species poses a potentially wide geographical distribution and a global threat for pepper crops (3,4). References: (1) A. D. Abraham et al. Afr. J. Biotechnol. 7:414, 2008. (2) D. Knierim et al. Plant Pathol. 59:991, 2010. (3) D. Knierim et al. Arch. Virol. 158:1337, 2013. (4) F. Villanueva et al. Plant Dis. 97:1261, 2013.

Plant Disease ◽  
2021 ◽  
Author(s):  
Yuhong Zhang ◽  
Jun Zhou ◽  
Binhui Zhan ◽  
shifang li ◽  
Zhixiang Zhang

Mei (Prunus mume Sieb. et Zucc.), widely distributed in East Asian countries for both fruiting- and flowering-purposes, is susceptible to viral infections (Marais et al. 2018). Infection by plum bark necrosis stem pitting-associated virus (PBNSPaV) or little cherry virus 2 (LChV-2) possibly caused overall yield loss in mei in Japan due to incomplete flower development, low fruit bearing rate, and interveinal chlorosis (Numaguchi et al. 2019). Virus-like disease showing mosaic, interveinal chlorosis, vein clearing, or necrotic spot on leaf was observed in mei trees in Beijing, Wuhan, Wuxi, and Nanjing in spring and early summer from 2017 to 2018. Symptomatic leaves collected from the four regions were pooled as two samples for RNA-sequencing (RNA-seq) analysis. After ribosomal RNA (rRNA)-depletion, total RNA extracted by TRNzol reagent (TIANGEN, China) was subjected to library construction using NEBNext Ultra RNA Library Prep Kit (NEB, MA, USA) and sequenced on an Illumina Hiseq 4000 (Novogene, China). Sequencing data was filtered, screened, and assembled as described previously (Zhou et al. 2020) to generate contigs, following by BLAST-x/n search in viral genomes in GenBank. We identified >300 contigs (208-10756 nt) homologous to Asian prunus virus 1 and Asian prunus virus 2 (APV1 and 2), mume virus A (MuVA), PBNSPaV, and peach leaf pitting-associated virus (PLPaV), with 71-100% of nucleotide sequence identity values. APV1 and 2 have been reported in mei in China (Wang et al. 2018), here, we focused on the other three viruses. Contigs homologous to these three viruses were further assembled into three scaffolds of 14,224 nt, 1107 nt, and 753 nt for PBNSPaV, MuVA, and PLPaV, respectively. The scaffold of PBNSPaV (MW217574) nearly covered the whole genome of the isolate VIC3 from Australia (LC523039.1) (Kinoti et al. 2020) with 92.30% of sequence identity; the scalffold of MuVA (MW217572) covered 14.50% of the genome of the isolate pm14 from Japan (NC 040568.1) (Marais et al.2018) with 98.47% sequence identity; the scaffold of PLPaV (MW217573) covered 15.26% of the genome of the isolate XJ-6 from peach (KY867750.1) (He et al. 2017) with 85.23% sequence identity. Presence of the three viruses were verified by RT-PCR detection using designed specific primers for PBNSPaV (Forward: 5′-CAACAAAACTCCCACAGCGG-3 [positions 4014-4033, NC_009992.1] / Reverse: 5′-GCCAAAAGAAGTGCTGGTGG-3′ [positions 4659-4640, NC_009992.1]), MuVA (Forward: 5′-AAGAGAATTACTTCAATGCCCTC-3′ [positions 171-194, NC_040568.1] / Reverse: 5′-GATATCCAAGATACGATTAGCCAG-3′ [positions 533-510, NC_040568.1]), and PLPaV (Forward: 5′-GCTATATCTCAACAACTGCAAGAA-3 [positions 5798-5821, KY867750.1] / Reverse: 5′- GAGTGATACATAGTCCACAGAGAT-3′[ positions 6045-6022, KY867750.1]). The amplified 626, 350 and 251 bp fragments of PBNSPaV, MuVA and PLPaV had 91.47%, 98.07% and 81.89% sequence identity to their respective reference sequences. This is the first report of PBNSPaV and MuVA infecting mei in China, and more importantly, the first report of a new host for PLPaV. In addition, 30 collected leaf samples from Nanjing and Wuhan were analyzed by RT-PCR and 15, 6, and 5 samples tested positive to PLPaV, PBNSPaV, and MuVA, respectively. Although it is difficult to link a particular virus with the observed symptoms due to mixed infections, the symptoms were significantly associated with viral infection because almost all symptomatic leaf samples were virus(es)-positive. Further studies would be required to determine the distribution and impact of these viruses on mei trees and other stone fruits species and to understand the possibility that mei trees may play a role in PLPaV epidemiology.


Plant Disease ◽  
2006 ◽  
Vol 90 (1) ◽  
pp. 110-110 ◽  
Author(s):  
C. Rubies Autonell ◽  
C. Ratti ◽  
R. Resca ◽  
M. De Biaggi ◽  
J. Ayala García

Beet virus Q (BVQ) is a member of the genus Pomovirus that is transmitted by Polymyxa betae Keskin. Initially described as the Wierthe serotype of Beet soilborne virus (BSBV), BVQ is now considered a distinct virus species based on its genomic properties (1). BVQ is commonly found in fields where BSBV and the causal agent of rhizomania disease, Beet necrotic yellow vein virus (BNYVV), are also present. Simultaneous infection of sugar beet plants with multiple virus species could affect disease symptom expression (4). For this reason, the pathogenicity of BVQ and its role in the epidemiology of rhizomania disease remain a subject of study. During 2004, six soil samples were collected from different sites in the Castilla-La Mancha Region in Spain (Albacete and Ciudad Real provinces) where rhizomania symptoms were observed in BNYVV-tolerant sugar beet cultivars. Soil from the Hainaut Region of Belgium, infected with BNYVV, BSBV, and BVQ and supplied by Prof. C. Bragard (Unité de Phytopathologie, Université Catholique de Louvain, Belgium) was used as a positive control. Sugar beet plants (cv. Asso) were grown in the soil samples for 45 days at 24°C and then root tissue was harvested. All samples were analyzed using enzyme-linked immunosorbent assay (ELISA) with commercial BNYVV antiserum (BIOREBA AG, Reinach, Switzerland) and BSBV/BVQ antisera (IC10 and 6G2) supplied by R. Koenig (Federal Biological Research Centre for Agriculture and Forestry, Braunschweig, Germany). Total RNA extracted from sugar beet roots as previously described (3) was tested using reverse transcription-polymerase chain reaction (RT-PCR). Primers BVQ3F (5′-GTT TTC AAA CTT GCC ATC CT-3′) and BVQ3R2 (5′-CCA CAA TGG GCC AAT AGA-3′), which amplify a 690-bp fragment of the triple gene block region of BVQ RNA 3, were designed based on the published sequence (GenBank Accession No. AJ223598). The presence of BSBV and BNYVV was assayed using RT-PCR with previously described primers (2,3). BVQ was detected from plants grown in soil collected from La Roda (Albacete) in Spain and from Hainaut in Belgium. The fragments amplified from Spanish sample with BVQ3F and BVQ3R2 (GenBank Accession No. AY849375) showed 95.9% nucleotide sequence identity with the previously published sequence of BVQ (1). The La Roda BVQ isolate was mechanically transmitted to Chenopodium quinoa from infected sugar beet root tissue. BVQ was detected using RT-PCR in local lesions that appeared approximately 5 days after inoculation and subsequently spread along veins. To our knowledge, this is the first report of BVQ in soil from Spain, although it has been previously reported in Belgium, Bulgaria, France, Germany, Hungary, and the Netherlands (2). BSBV and BNYVV (type A) were detected in all six Spanish samples, as well as in the Belgian soil. References: (1) R. Koenig et al. J. Gen. Virol. 79:2027, 1998. (2) A. Meunier et al. Appl. Environ Microbiol. 69:2356, 2003. (3) C. Ratti et al. J. Virol. Methods 124:41, 2005. (4) C. Rush Annu. Rev Phytopathol 41:567, 2003.


Plant Disease ◽  
2014 ◽  
Vol 98 (11) ◽  
pp. 1589-1589 ◽  
Author(s):  
F.-F. Zhao ◽  
D.-H. Xi ◽  
J. Liu ◽  
X.-G. Deng ◽  
H.-H. Lin

Chilli veinal mottle virus (ChiVMV), a potyvirus, is widespread over the world. In China, it was first reported in chili pepper (Capsicum annuum) in Hainan Province (south China) in 2006 (2). Subsequently, it was reported in tobacco (Nicotiana tabacum) in Yunnan Province (southwest China) in 2011 (1). Sichuan Province is one of the largest vegetable producing areas of China. In May 2012, tomatoes with leaves displaying virus-infected symptoms like mottling, mosaic, narrowing, or curling were observed in several fields of Chengdu, eastern Sichuan Province, southwest China. Of the 20 fields we investigated, four fields with 90% tomato plants were infected. During 2012 and 2013, six samples were collected from symptomatic tomato leaves based on different symptoms and locations. All six samples were assayed by western blotting using polyclonal antisera (Cucumber mosaic virus [CMV], Tobacco mosaic virus [TMV]) obtained from Agdia (Elkhart) and one antiserum to ChiVMV obtained from Yunnan Academy of Agricultural Science (China). Two samples from Pengzhou and one sample from Shuangliu exhibiting mosaic leaves were positive for TMV, one sample from Pixian exhibiting narrowing leaves was positive for CMV, and the other two samples from Shuangliu exhibiting mottle and leaf distortion were positive for ChiVMV. Total RNAs was extracted from all six samples and healthy tomato leaves using Trizol reagent (Invitrogen), First-strand cDNA synthesis primed with oligo(dT) by SuperScript III Reverse Transcriptase (Invitrogen). RT-PCR was performed using primer pairs ChiVMV-CP F (5′-GCAGGAGAGAGTGTTGATGCTG-3′) and ChiVMV–CP R (5′-(T)16AACGCCAACTATTG-3′), which were designed to direct the amplification of the entire capsid protein (CP) gene and 3′ untranslated region (3′-UTR) of ChiVMV (GenBank Accession No. KC711055). The expected 1,166-bp DNA fragment was amplified from the two tomato samples from Shuangliu that were positive for ChiVMV in the western blot tests, but not from the others. The obtained fragments were purified and cloned into the PMD18-T vector (TaKaRa) and sequenced. The sequencing results showed that the two ChiVMV isolates from tomato in Shuangliu were identical (KF738253). Nucleotide BLAST analysis revealed that this ChiVMV isolate shared ~84 to 99% nucleotide identities with other ChiVMV isolates available in GenBank (KC711055 to KF220408). To fulfill Koch's postulates, we isolated this virus by three cycle single lesion isolation in N. tabacum, and mechanically inoculated it onto tomato leaves. The same mottle and leaf distortion symptoms in systemic leaves were observed. Subsequent RT-PCR, fragment clone, and sequence determination tests were repeated and the results were the same. All the evidence from these tests revealed that the two tomato plants were infected by ChiVMV. To our knowledge, this is the first report of ChiVMV naturally infecting tomato in China. It shows that ChiVMV is spreading in China and is naturally infecting a new solanaceous crop in the southwest area, and the spread of the virus may affect tomato crop yields in China. Thus, it is very important to seek an effective way to control this virus. References: (1) M. Ding et al. Plant Dis. 95:357, 2011. (2) J. Wang et al. Plant Dis. 90:377, 2006.


Plant Disease ◽  
2014 ◽  
Vol 98 (7) ◽  
pp. 1016-1016 ◽  
Author(s):  
B. Babu ◽  
H. Dankers ◽  
M. L. Paret

Scotch bonnet (Capsicum chinense) is a tropical hot pepper variety that is grown in South America, the Caribbean Islands, and in Florida, and is an important cash crop. In Florida, scotch bonnet is grown on ~100 acres annually. Virus-like leaf symptoms including mosaic and yellow mottling were observed on scotch bonnet plants in a field at Quincy, FL, with a disease incidence of ~5%. Two symptomatic and one non-symptomatic plant sample were collected from this field for identification of the causal agent associated with the symptoms. Viral inclusion assays (2) of the epidermal tissues of the symptomatic scotch bonnet samples using Azure A stain indicated the presence of spherical aggregates of crystalline inclusion bodies. Testing of the symptomatic samples using lateral flow immunoassays (Immunostrips, Agdia, Elkhart, IN) specific to Cucumber mosaic virus (CMV), Potato virus Y (PVY), Pepper mild mottle virus (PMMoV), Tobacco mosaic virus (TMV), Zucchini yellow mosaic virus (ZYMV), and Papaya ringspot virus (PRSV), showed a positive reaction only to CMV. The sap from an infected leaf sample ground in 0.01 M Sorensons phosphate buffer (pH 7.0) was used to mechanically inoculate one healthy scotch bonnet plant (tested negative for CMV with Immunostrip) at the 2- to 3-leaf stage. The inoculated plant developed mild mosaic and mottling symptoms 12 to 14 days post inoculation. The presence of CMV in the mechanically inoculated plant was further verified using CMV Immunostrips. Total RNA was extracted (RNeasy Plant Mini Kit, Qiagen, Valencia, CA) from the previously collected two symptomatic and one non-symptomatic scotch bonnet samples. The samples were subjected to reverse-transcription (RT)-PCR assays using SuperScript III One-Step RT-PCR System (Invitrogen, Life Technologies, Grand Island, NY), and using multiplex RT-PCR primer sets (1). The primers were designed to differentiate the CMV subgroup I and II, targeting the partial coat protein gene and the 3′UTR. The RT-PCR assays using the multiplex primers produced an amplicon of 590 bp, with the CMV subgroup I primers. The RT-PCR product was only amplified from the symptomatic leaf samples. The obtained amplicons were gel eluted, and directly sequenced bi-directionally (GenBank Accession Nos. KF805389 and KF805390). BLAST analysis of these sequences showed 97 to 98% nucleotide identities with the CMV isolates in the NCBI database. The isolates collected in Florida exhibited highest identity (98%) with the CMV isolate from tomato (DQ302718). These results revealed the association of CMV subgroup I with symptomatic scotch bonnet leaf samples. Although CMV has been reported from scotch bonnet, this is the first report of its occurrence in Florida. References: (1) S. Chen et al. Acta Biochim Biophys Sin. 43:465, 2011. (2) R. G. Christie and J. R. Edwardson. Plant Dis. 70:273, 1986.


1984 ◽  
Vol 79 (3) ◽  
pp. 369-370 ◽  
Author(s):  
Delir Corrêa Gomes

Two samples of Sparganum, the larval form of Lueheella Baer, 1924 (= Spirometra Mueller, 1937) were recovered from Philander opossum (L. 1758) captured in Salobra, Mato Grosso State, Brazil, by Dr. Lauro Travassos in may, 1942. This is the first report of the presence of this larval form in P. opossum. Dealing with helminths recovered from Brazilian Marsupialia, deposited in Oswaldo Cruz Institute Helminthological Collection, we examined in two samples of the preserved material collected in Salobra. Mato Grosso State, nine larval forms (Sparganum) of Lueheella sp. One of the samples, with six specimens, tissue. It is the first report of philander opossum harbouring this larval stage. The studied preserved wet material was stained and whole mounts were deposited in the Oswaldo Cruz institute Helminthological collection ns. 31.470 and 31.471. Measurements are in mm.


Plant Disease ◽  
2019 ◽  
Vol 103 (11) ◽  
pp. 2972 ◽  
Author(s):  
K. F. C. Pantoja ◽  
B. R. De Marchi ◽  
R. Krause-Sakate ◽  
T. Mituti ◽  
J. A. M. Rezende ◽  
...  

Plant Disease ◽  
2012 ◽  
Vol 96 (4) ◽  
pp. 593-593 ◽  
Author(s):  
M. Viršček Marn ◽  
I. Mavrič Pleško ◽  
J. Zindović

Numerous ornamental plants have been found to be symptomless hosts of various pospiviroids including Citrus exocortis viroid (CEVd), and hence, may serve as potential inoculum reservoirs for susceptible vegetable plants. Production of tomato, potato, and pepper, on which viroids from the genus Pospiviroid can cause severe damage, represents two-thirds of the vegetable production in Montenegro. We tested vegetable, ornamental, and weed host plants for the presence of pospiviroids in September 2011. Altogether 80 samples were taken. Samples of ornamental plants (15 of Petunia spp., 7 of Impatiens spp., 4 of Verbena spp., 3 of Dahlia spp., 3 of Pittosporum tobira, 3 of Vinca spp., 2 of Brugmansia spp., 2 of avocado, 2 of Portulaca spp., and 1 of Datura sp.) were taken from three places of production. One sample per species was collected from symptomless eggplants, tomatoes, sweet peppers, and avocados in the vicinity of one glasshouse with ornamental plants. Twenty-two samples from sweet pepper and seven samples from tomato, all grown under cover and all showing potential virus-like symptoms, were collected from three places of vegetable production. Two samples of Solanum nigrum and three samples of unidentified weed species belonging to genus Solanum were taken from two glasshouses. With the exception of weed plants, samples consisted of fully developed leaves collected from five plants. All sampled ornamental and weed plants were symptomless. RNA was extracted from approximately 15 mg of leaf tissue with the MagMAX-96 Total RNA Isolation Kit (Life Technologies, Foster City, CA) in accordance with the manufacturer's instructions for the MagMAX Express Magnetic Particle Processor. Samples were tested by reverse transcription (RT)-PCR using semi-universal pospiviroid primers (Pospi1-RE/FW and Vid-RE/FW [3]). None of the samples reacted with the Vid-RE/FW primer pair. An amplicon of an expected size (approximately 196 nt) was produced with the Pospi1-RE/FW primer pair from one Verbena sp. sample. Direct sequencing was performed by Macrogen (Amsterdam, The Netherlands). Sequence analysis indicated the presence of CEVd. This finding was confirmed by sequence analysis of the DNA product obtained by RT-PCR using Pospi1-FW/RE from a new extraction. Further analyses using primer pairs CEVd-AS/S (1) and CEVd-FW2/RE2 (4) were performed to obtain the full viroid sequence. The sequence of 372 nt was deposited in GenBank (Accession No. JN872140) and had 99% identity with two CEVd sequences from Verbena spp. (Accession Nos. EF192396 and DQ094297). To our knowledge, this is the first report of CEVd in a Verbena sp. in Montenegro and the second report in Europe (4). CEVd has been detected in Verbena spp. also in India and Canada and can be transmitted by seed (2). The infected Verbena sp. plants were not destroyed, since CEVd is not listed as a quarantine organism in Montenegro. The spread of CEVd infection to tomato could devastate the production of this crop in Montenegro. References: (1) A. Elleuch et al. Plant Protect. Sci. 39:139, 2003. (2) R. P. Singh et al. Eur. J. Plant Pathol. 124:691, 2009. (3) J. Th. J. Verhoeven et al. Eur. J. Plant Pathol. 110:823, 2004. (4) J. Th. J. Verhoeven et al. Plant Dis. 92:973, 2008.


Plant Disease ◽  
2013 ◽  
Vol 97 (7) ◽  
pp. 1003-1003
Author(s):  
D. F. Quito-Avila ◽  
M. A. Ibarra ◽  
R. A. Alvarez ◽  
M. F. Ratti ◽  
L. Espinoza ◽  
...  

Banana bract mosaic virus (BBrMV), a member of the genus Potyvirus, family Potyviridae, is the causal agent of bract mosaic disease. The disorder has been considered a serious constraint to banana and plantain production in India and the Philippines, where the virus was first identified (3). To date, the presence of BBrMV has been reported only in a few banana-growing countries in Asia (3). In the Americas, BBrMV has been detected by ELISA tests in Colombia only (1). The efficient spread of BBrMV through aphids and vegetative material increases the quarantine risk and requires strict measures to prevent entrance of the virus to new areas. In Ecuador—the world's number one banana exporter—the banana industry represents the main agricultural income source. Thus, early detection of banana pathogens is a priority. In June of 2012, mosaic symptoms in bracts and bunch distortion of ‘Cavendish’ banana were observed in a commercial field in the province of Guayas, Ecuador. Leaves from 35 symptomatic plants were tested for Cucumber mosaic virus (CMV), Banana streak virus (BSV), and BBrMV using double antibody sandwich ELISA kits from Adgen (Scotland, UK). Twenty-one plants tested positive for BBrMV but not for CMV or BSV. In order to confirm the ELISA results, fresh or lyophilized leaf extracts were used for immunocapture reverse transcription (IC-RT)-PCR. In addition, total RNA was extracted from the ELISA-positive samples and subjected to RT-PCR. The RT reactions were done using both random and oligo dT primers. Several sets of primers, flanking conserved regions of the virus coat protein (CP), have been used for PCR-detection of BBrMV (2,3,4). The Ecuadorian BBrMV isolate was successfully detected by three primer sets with reported amplification products of 324, 280, and 260 nucleotides long, respectively (3,4). Amplification products of the expected size were purified and sequenced. All the nucleotide sequences obtained from 20 PCR-positive symptomatic plants were 100% identical between each other. However, 99% identity was observed when PCR products from the Ecuadorian isolate were compared with the corresponding fragment of a BBrMV isolate from the Philippines (NCBI Accession No. DQ851496.1). PCR products of the Ecuadorian isolate, amplified by the different CP primers described above, were assembled into a 408-bp fragment and deposited in the NCBI GenBank (KC247746). Further testing confirmed the presence of BBrMV in symptomatic plants from four different provinces. To our knowledge, this is the first report of BBrMV in Ecuador and the first BBrMV partial nucleotide sequence reported from the Americas. It is worth mentioning that primer set Bract 1/Bract 2, which amplifies a 604-bp product (2), was not effective in detecting the Ecuadorian isolate. It is hypothesized that nucleotide variation at the reverse primer site is the cause of the lack of amplification with this primer set, since the forward primer is part of the sequenced product and no variation was found. Sequencing of the entire CP region is underway to conduct phylogenetic analysis and determine genetic relationships across several other BBrMV isolates. References: (1) J. J. Alarcon et al. Agron 14:65, 2006. (2) M. F. Bateson and J. L. Dale. Arch. Virol 140:515, 1995. (3) E. M. Dassanayake. Ann. Sri Lanka Dept. Agric. 3:19, 2001. (4) M. L. Iskra-Caruana et al. J. Virol. Methods 153:223, 2008.


Plant Disease ◽  
2018 ◽  
Vol 102 (1) ◽  
pp. 258-258 ◽  
Author(s):  
A. Ahmad ◽  
M. Ashfaq ◽  
T. Riaz ◽  
M. Ahsan ◽  
S. Hyder ◽  
...  

Plant Disease ◽  
2014 ◽  
Vol 98 (5) ◽  
pp. 701-701 ◽  
Author(s):  
K.-S. Ling ◽  
R. Li ◽  
W. Zhang

In early 2013, greenhouse cucumber growers in Alberta, Canada, observed virus-like disease symptoms on mini-cucumber (Cucumis sativus) crops (e.g., ‘Picowell’). Two types of symptoms were commonly observed, green mottle mosaic and necrotic spots. In the early infection, young leaves of infected cucumber plants displayed light green mottle and blisters. The infected plants were stunted in growth, with darker green blisters and green mottle mosaic symptoms on mature leaves. Disease incidence varied from one greenhouse to another. In some severe cases, diseased plants were widely distributed inside the greenhouse, resulting in 10 to 15% yield losses based on grower's estimation. Nine symptomatic samples were collected and subjected to total RNA isolation using the TRIzol reagent (Invitrogen, Carlsbad, CA). Laboratory analyses were conducted using real-time RT-PCR systems for Cucumber green mottle mosaic virus (CGMMV) (1), Melon necrotic spot virus (MNSV, Ling, unpublished), and Squash mosaic virus (SqMV) (3). All nine samples were positive for CGMMV and seven of them were in mixed infections with MNSV. Two samples were selected for validation for the presence of CGMMV using conventional RT-PCR (2) with a new primer set (CGMMVMP F1: 5′-ATGTCTCTAAGTAAGGTGTC-3′ and CGMMV3′UTR R1: 5′-TGGGCCCCTACCCGGGG-3′) and two previous online published primer sets, one for CGMMV MP (5′ TAAGTTTGCTAGGTGTGATC-3′, GenBank Accession No. AJ250104 and 5′ ACATAGATGTCTCTAAGTAAG-3′, AJ250105), and another for CGMMV CP (5′ ACCCTCGAAACTAAGCTTTC-3′, AJ243351 and 5′ GAAGAGTCCAGTTCTGTTTC-3′, AJ243352). The expected sizes of RT-PCR products were obtained and sequenced directly. Sequences from these three products overlapped and generated a 1,282-bp contig (KF683202). BLASTn analysis to the NCBI database showed 99% sequence identity to CGMMV isolates identified in Asia, including China (GQ277655, KC852074), India (DQ767631), Korea (AF417243), Myanmar (AB510355), and Taiwan (HQ692886), but only 92% sequence identity to other CGMMV isolates identified in Europe, including Spain (GQ411361) and Russia (GQ495274), and 95% to CGMMV isolate from Israel (KF155231). The strong sequence identity to the CGMMV Asian isolates suggests that the Canadian CGMMV isolate identified in Alberta was likely of Asian origin. In two bioassay experiments using one sample prepared in 0.01 M phosphate buffer, the similar green mottle mosaic symptoms were observed on systemic leaves in the mechanically inoculated plants and the presence of CGMMV, but not MNSV, was confirmed through real-time RT-PCR on four different cucurbits, including three Cucumis sativus cultivars (six plants in ‘Marketer,’ five plants in ‘Poinsett 76,’ six plants in ‘Straight 8’), seven plants of C. melo ‘Athena,’ six plants of C. metulifer (PI201681), and two plants of Citrullus lanatus ‘Charleston Gray.’ To our knowledge, CGMMV has only been reported in Asia, Europe, and the Middle East, and this is the first report of CGMMV in the American continents. CGMMV is highly contagious and is seed borne on cucurbits. With the increasing trend in growing grafted watermelon and other cucurbits in the United States and elsewhere, it is even more important now that a vigilant seed health test program for CGMMV should be implemented. References: (1) H. Chen et al. J. Virol. Methods 149:326, 2008. (2) K.-S. Ling et al. Plant Dis. 92:1683, 2008. (3) K.-S. Ling et al. J. Phytopathol. 159:649, 2011.


Sign in / Sign up

Export Citation Format

Share Document