scholarly journals First Report of Fusarium solani Causing Soft Rot on the Tuber of Gastrodia elata in Korea

Plant Disease ◽  
2017 ◽  
Vol 101 (7) ◽  
pp. 1323-1323 ◽  
Author(s):  
M. Han ◽  
H. R. Lee ◽  
M. N. Choi ◽  
H. S. Lee ◽  
S. W. Lee ◽  
...  
Plant Disease ◽  
2017 ◽  
Vol 101 (6) ◽  
pp. 1048-1048 ◽  
Author(s):  
M. Han ◽  
M. N. Choi ◽  
H. R. Lee ◽  
E. J. Park

Plant Disease ◽  
2009 ◽  
Vol 93 (5) ◽  
pp. 547-547
Author(s):  
S. N. Rampersad

Trinidad is a major exporter of pumpkins (Cucurbita pepo L.) to other Caribbean countries, Canada, and the United States. Producers and exporters have reported 50 to 80% yield losses because of soft rot and overnight collapse of fruit at the pre- and postharvest stages. Severe fruit rot occurred in fields in Victoria County in South Trinidad between April and May 2006 (mid-to-late dry season) with an increase in the severity and number of affected fruit in the rainy season (July to December). Symptoms began as water-soaked lesions on the fruit of any age at the point of contact with the soil. The disease progressed to a soft rot with leakage and whole fruit collapse. A dark brown, soft decay also developed at the base of the main vines. Fusarium solani was isolated on selective fusarium agar and potato dextrose agar (PDA) (1) after 7 to 10 days of incubation at 25°C. The pathogen was identified by morphological characteristics and pathogenicity tests. Colonies were fast growing with white aerial mycelia and a cream color on the reverse side; hyphae were septate and hyaline, conidiophores were unbranched, and microconidia were abundant, thin walled, hyaline, fusiform to ovoid, generally one to two celled, and 8 to 10 × 2 to 4 μm. Macroconidia were hyaline, two to three celled, moderately curved, thick walled, and 25 to 30 × 4 to 6 μm. Pathogenicity tests for 10 isolates were conducted on 2-week-old pumpkin seedlings (cv. Jamaican squash; seven plants per isolate) and mature pumpkin fruit (2). Briefly, seedlings were inoculated by dipping their roots in a spore suspension (1 × 104 spores per ml) for 20 min. The plants were repotted in sterile potting soil. For negative controls, plant roots were dipped in sterile water. After the rind of fruit was swabbed with 70% ethanol followed by three rinses with sterile distilled water, 0.4-cm-diameter agar plugs of the isolates were inserted into wounds made with a sterile 1-cm-diameter borer. Sterile PDA plugs served as negative controls. Fruit were placed in sealed, clear, plastic bags. Inoculated plants and fruit were placed on greenhouse benches (30 to 32°C day and 25 to 27°C night temperatures) and monitored over a 30-day period. Tests were repeated once. Inoculated fruit developed a brown, spongy lesion that expanded from the initial wound site over a period of approximately 17 days after inoculation. White mycelia grew diffusely over the lesion. Inoculated plants developed yellow and finally necrotic leaves and lesions developed on stems at the soil line approximately 21 days after inoculation. No symptoms developed on the control plants. The fungus was reisolated from symptomatic tissue, fulfilling Koch's postulates. To my knowledge, this is the first report of Fusarium fruit rot of pumpkin in Trinidad. References: (1) J. Leslie and B. Summerell. Page 1 in: The Fusarium Laboratory Manual. Blackwell Publishing, Oxford, 2006. (2) W. H. Elmer. Plant Dis. 80:131, 1996.


Plant Disease ◽  
2019 ◽  
Vol 103 (10) ◽  
pp. 2691-2691 ◽  
Author(s):  
M. Qiao ◽  
W. G. Tian ◽  
B. Feng ◽  
Z. F. Yu ◽  
Z. X. Peng

Plant Disease ◽  
2020 ◽  
Vol 104 (11) ◽  
pp. 3064
Author(s):  
J. Park ◽  
J.-E. Kim ◽  
S. Kim ◽  
H. Son

Plant Disease ◽  
2019 ◽  
Vol 103 (8) ◽  
pp. 2136
Author(s):  
J. Liu ◽  
W. Feng ◽  
L. Yang ◽  
X. Li ◽  
J. Lu

Plant Disease ◽  
2019 ◽  
Vol 103 (10) ◽  
pp. 2667-2667 ◽  
Author(s):  
N. Zlatković ◽  
A. Prokić ◽  
K. Gašić ◽  
N. Kuzmanović ◽  
M. Ivanović ◽  
...  

Plant Disease ◽  
2018 ◽  
Vol 102 (2) ◽  
pp. 437-437
Author(s):  
A. H. Zhang ◽  
X. X. Zhang ◽  
F. J. Lei ◽  
L. X. Zhang

Plant Disease ◽  
2015 ◽  
Vol 99 (1) ◽  
pp. 155-155 ◽  
Author(s):  
X. F. Chen ◽  
H. L. Zhang ◽  
J. Chen

A bacterial pathogen, Dickeya solani, emerged as a major threat to potato (Solanum tuberosum) production in Europe in 2004 and has spread to many potato-growing regions via international trade. In December 2013, soft rot symptoms were observed in hyacinth (Hyacinthus orientalis) bulbs imported from the Netherlands into China at Ningbo Port. Diseased bulbs gave off an offensive odor. The base and internal parts of diseased bulbs rotted, and the margins of diseased tissues showed brown discoloration. Isolation on nutrient agar glucose (NAG) medium resulted in dominating colonies of characteristic “fried egg” morphology (1). One colony was chosen for further investigation and tentatively named “isolate 6165-3.” Under microscopic visualization after gram stain, the cells of isolate 6165-3 were gram-negative, motile, and rod shaped. The isolate was then identified as a member of genus Dickeya using the Biolog GN microplate. The 16S rRNA, recA, and dnaX sequences of isolate 6165-3 were subsequently determined and deposited in GenBank with accession numbers KM405240, KM405241, and KM405242, sharing 99% (16S rRNA), 100% (recA), and 100% (dnaX) nucleotide identity with those of known D. solani isolates, respectively. By this means, the isolate 6165-3 was identified as D. solani (1,2). To confirm the pathogenicity of the isolate, four plants each of 30-day-old hyacinth, 14-day-old potato, and 60-day-old moth orchid (Phalaenopsis amabilis) were inoculated with suspensions of the isolate with a concentration of 108 CFU/ml in sterile water by stabbing. Plants were incubated in a climate chamber at 28°C during the day and 24°C during the night with a relative humidity of 93% and a photoperiod of 12/12 h. Plants inoculated with sterile water were included as negative controls. After 2 or 3 days, typical symptoms such as water-soaked lesions and soft rot developed around the inoculation point, while the negative controls remained symptomless. Koch's postulates were fulfilled by re-isolating bacteria from lesions, which had identical sequence and morphology characters with the inoculated isolate. This is the first report of intercepted D. solani on hyacinth bulbs imported from the Netherlands into China, indicating that D. solani can spread via hyacinth. Further spread of the pathogen into potato production might lead to immeasurable economic consequences for China. References: (1) P. F. Sarris et al. New Dis. Rep. 24:21, 2011. (2) J. M. van der Wolf et al. Int. J. Syst. Evol. Microbiol. 64:768, 2014.


Plant Disease ◽  
1999 ◽  
Vol 83 (2) ◽  
pp. 199-199 ◽  
Author(s):  
D. B. Langston ◽  
R. D. Walcott ◽  
R. D. Gitaitis ◽  
F. H. Sanders

In September 1998, a fruit rot was reported affecting pumpkin (Cucurbita pepo) in a commercial field in Terrell Co., Georgia. Symptoms on the surface of fruit occurred as round, necrotic spots or cracks a few millimeters in diameter. With age, the tissue surrounding these lesions became soft and wrinkled. A soft rot expanded into the flesh of the pumpkin, originating from the lesions observed on the surface. In time, infected pumpkins totally collapsed. V-shaped, necrotic lesions occurred at the margin of the leaf and extended inward toward the mid-rib. Samples were collected from the field and bacteria were isolated from fruit and leaf lesions onto King's medium B (1). The bacterium isolated was rod shaped, gram negative, nonflourescent, oxidase positive, Tween 80 positive, carboxymethyl cellulose positive, β-OH butyrate positive, and malonate negative. The bacterium reacted positively with polyclonal antibodies specific for the watermelon fruit blotch pathogen Acidivorax avenae subsp. citrulli and was identified as A. avenae subsp. citrulli by MIDI (Microbial Identification System, Newark, DE) according to statistical analysis of fatty acid data. Results from polymerase chain reaction (PCR) amplification of the bacterium isolated from pumpkin yielded 360-bp fragments that, when digested with the restriction enzyme HaeIII, had DNA banding patterns identical to those of stock A. avenae subsp. citrulli DNA. Koch's postulates were completed successfully with 2-week-old watermelon seedlings. This is the first report of A. avenae subsp. citrulli causing fruit rot of pumpkin in Georgia. Reference: (1) E. O. King et al. J. Lab. Clin. Med. 44:301, 1954.


Sign in / Sign up

Export Citation Format

Share Document