scholarly journals Resistance to Puccinia coronata f. sp. avenae in Avena magna, A. murphyi, and A. insularis

Plant Disease ◽  
2016 ◽  
Vol 100 (6) ◽  
pp. 1184-1191 ◽  
Author(s):  
Sylwia Sowa ◽  
Edyta Paczos-Grzęda ◽  
Aneta Koroluk ◽  
Sylwia Okoń ◽  
Agnieszka Ostrowska ◽  
...  

Wild oat tetraploids of the section Pachycarpa have already been proven to be a rich source of useful genes but have largely been unexploited for Puccinia coronata resistance. In this study, accessions of Avena magna, A. murphyi, and A. insularis gathered from European and North American gene banks were evaluated at the seedling stage for crown rust reaction using the host–pathogen test and six highly diverse and virulent P. coronata isolates. Of the 92 Avena accessions analyzed, 58.7% were resistant to at least one crown rust race. In all, 37% of the tested accessions reacted nonuniformly, which indicated their heterogeneity. The highest level of resistance was observed in three of the accessions, one of which was verified by flow cytometry as being hexaploid and two of which were verified as being tetraploids. The infection profiles of 19 accessions corresponded to resistance determined by the genes Pc14, Pc39, Pc40, Pc48, Pc50, Pc54, Pc55, Pc61, Pc67, Pc68, Pc97, Pc101, or Pc104. The patterns of infection of the remaining resistant A. magna and A. murphyi accessions allowed us to postulate the presence of potentially novel crown rust resistance genes.

2020 ◽  
Vol 75 (2) ◽  
pp. 37-45
Author(s):  
SYLWIA SOWA

The best source of crown rust resistance genes (Pc) in genus Avena is a wild hexaploid A. sterilis L. In this study, accessions of A. sterilis gathered from European and North American gene banks, originated from 21 countries were evaluated at the seedling stage for crown rust reaction using the host–pathogen test and two Puccinia coronata f. sp. avenae isolates. Of the 45 oat accessions analyzed, 12 were resistant to one crown rust race (3.2). Resistance to both pathotypes used in the study was observed in two of the accessions, first of which was collected in Libya (AVE 2532) and second in Portugal (CN 26036). Further research is required to evaluate the genetic background of the discovered resistance, however, obtained results provide a valuable first step in the identification of new promising crown rust resistance sources.


1971 ◽  
Vol 13 (2) ◽  
pp. 251-255 ◽  
Author(s):  
G. Fleischmann ◽  
R. I. H. McKenzie ◽  
W. A. Shipton

The inheritance of genes in three collections of Avena sterilis wild oats conferring resistance to races 216, 264, 295, 305, 326, 330, 332, and 446 of crown rust, Puccinia coronata avenae, was investigated. C. I. 8081 from Portugal contained a partially dominant gene, designated Pc47, which conferred resistance to all eight races. CW486 from Tunisia had a dominant gene, designated Pc50, which gave resistance to all races except 295, 326, and 446. F158 from Israel had two dominant genes; one, designated Pc48, conferred resistance to all the races but 305, while the second, designated Pc49, conferred resistance to races 216, 326, 330, 332, and 446. Genes Pc47, Pc48, Pc49, and Pc50 were inherited independently of each other and of those genes previously isolated from A. sterilis.


Plant Disease ◽  
2018 ◽  
Vol 102 (12) ◽  
pp. 2616-2624 ◽  
Author(s):  
Edyta Paczos-Grzeda ◽  
Sylwia Sowa ◽  
Aneta Koroluk ◽  
Tim Langdon

Crown rust, caused by Puccinia coronata f. sp. avenae, is the most widespread and harmful fungal disease of oat. The best defense against the pathogen is use of cultivars with genetic resistance, which is effective, economic, and an environmentally friendly alternative to chemical control. However, the continuous evolution of the pathogen can rapidly overcome major gene resistance, creating an urgent need to identify new sources. Wild oat accessions have already proven to be valuable donors of many resistance genes, but the weed species Avena fatua remains underexploited. Its abundance across multiple environments and the frequent occurrence of herbicide-resistant populations demonstrate its ready ability to adapt to biotic and abiotic stresses; yet, surprisingly, there are no extensive studies which describe crown rust resistance occurrence in gene bank stocks of A. fatua. In this study, 204 accessions of A. fatua maintained in the collections of the United States Department of Agriculture (USDA) and Polish National Centre for Plant Genetic Resources were evaluated at the seedling stage for crown rust reaction using host–pathogen tests with five highly diverse and virulent races of P. coronata. Of tested genotypes, 85% showed a heterogeneous infection pattern, while 61% were susceptible or moderately susceptible to all races. Of the 79 resistant A. fatua accessions, seedling resistance to at least two P. coronata isolates was recognized within 19 accessions, with 13 displaying a homogeneously resistant phenotype to one or two races. Accessions showing multiple single seedling resistance to three or four isolates were observed. Based on the seedling reaction to isolates used in the study, 18 infection profiles (IP) were determined. Using UPGMA clustering, resistant accessions were divided into six main clusters encompassing samples with similar IPs. Twelve of 18 patterns allowed us to postulate the likely presence of novel crown rust resistance genes, whose origin was predominantly from Kenya or Egypt. Future work will clarify the genetic basis of the resistances observed here, as well as confirm their potential utility in breeding resistant oat cultivars.


Plant Disease ◽  
2001 ◽  
Vol 85 (10) ◽  
pp. 1085-1090 ◽  
Author(s):  
B. D. van Niekerk ◽  
Z. A. Pretorius ◽  
W. H. P. Boshoff

Although crown rust (caused by Puccinia coronata f. sp. avenae) and stem rust (caused by Puccinia graminis f. sp. avenae) are generally considered to be the most widespread and damaging diseases of oat (Avena spp.) in South Africa, pathogenic variability has never been studied. During 1997 and 1998, one dominant crown rust pathotype (SBLL) was identified with virulence to resistance genes Pc40, Pc45, Pc46, Pc51, and Pc54. Four other pathotypes (SGLL, PBBB+Pc35, SDQL, and JBBM+Pc35), occurring at low frequencies and further rendering resistance genes Pc35, Pc39, Pc48, Pc50, Pc52, and Pc64 ineffective, were also detected. Resistance gene Pc40 was postulated in Wisconsin X1588-2; Pc51 in Euro, Maluti, Overberg, OX88I 075-106, Perdeberg, and Swartberg; and Pc39 was confirmed in the cultivar Fidler. During the same period, four stem rust pathotypes were identified with virulence to resistance genes Pg1, Pg2, Pg4, Pg8, Pg9, Pg12,Pg15, and Pga. Resistance gene Pga was postulated in Alpha, OX87 080-1, OX88I 075-106, Sederberg, and W94/4; Pg2 and/or Pg4 in Euro, Perdeberg, Potberg, and Swartberg; and Pg9 in Pallinup and Victorian. Collections of wild oat species Avena fatua, A. byzantina, A. sterilis, and A. barbata were susceptible to all crown rust patho-types, while the four stem rust pathotypes were virulent on all species except A. barbata.


1970 ◽  
Vol 48 (12) ◽  
pp. 2117-2121
Author(s):  
George Fleischmann

All isolates of oat crown rust, Puccinia coronata f. sp. avenae, identified in Canada in 1969 were inoculated onto 12 different lines containing resistance from wild oats, Avena sterilis, collected in Europe and the Middle East. Lines that contain resistance genes Pc-38 and Pc-39, and wild oat collections CI 8081 and F158, provide effective resistance to nearly every culture of crown rust. Regional differences in the level of virulence of crown rust cultures isolated from eastern and western Canada were observed on lines that contain A. sterilis resistance, with cultures of crown rust isolated from the east being generally less virulent than those from western Canada.


Plant Disease ◽  
2009 ◽  
Vol 93 (4) ◽  
pp. 363-366 ◽  
Author(s):  
M. L. Carson

The use of race-specific seedling genes for resistance has been the primary means of controlling crown rust of oat (Puccinia coronata). As resistance genes from hexaploid cultivated oat, Avena sativa and, later, the wild hexaploid animated oat, A. sterilis, were deployed in oat cultivars, corresponding virulence in the crown rust population increased rapidly, such that the effective lifespan of a resistant cultivar in the United States is now 5 years or less. Introgression of resistance genes from diploid and tetraploid Avena spp. into hexaploid oat has been difficult due to differences in ploidy levels and the lack of homology of chromosomes between the two species. The wild tetraploid slender oat, A. barbata, has been a source of powdery mildew and stem rust resistance in cultivated oat but has largely been unexploited for crown rust resistance. In total, 359 accessions of A. barbata from the National Small Grains Collection were evaluated in seedling greenhouse tests. Of these accessions, 39% were at least moderately resistant when inoculated with a crown rust race with low virulence (DBBC). When tested further with a highly diverse bulk inoculum from the 2006 and 2007 St. Paul buckthorn nursery, 48 accessions (approximately 13%) were resistant. Many of these accessions were heterogeneous in reaction, but two accessions (PI320588 from Israel and PI337893 from Italy) were highly resistant (immune) and two others (PI337886 from Italy and PI367293 from Spain) consistently produced resistant reactions (chlorotic flecks) in all tests. Resistant accessions were found from throughout much of the natural range of A. barbata. Crosses of some of the better accessions have been made to cultivated oat.


Plant Disease ◽  
2012 ◽  
Vol 96 (5) ◽  
pp. 623-628 ◽  
Author(s):  
P. D. Olivera ◽  
Y. Jin ◽  
M. Rouse ◽  
A. Badebo ◽  
T. Fetch ◽  
...  

North American durum lines, selected for resistance to TTKSK (Ug99) and related races of Puccinia graminis f. sp. tritici in Kenya, became susceptible in Debre Zeit, Ethiopia, suggesting the presence of stem rust races that were virulent to the TTKSK-effective genes in durum. The objective of this study was to characterize races of P. graminis f. sp. tritici present in the Debre Zeit, Ethiopia stem rust nursery. Three races of P. graminis f. sp. tritici were identified from 34 isolates: JRCQC, TRTTF, and TTKSK. Both races JRCQC and TRTTF possess virulence on stem rust resistance genes Sr13 and Sr9e, which may explain why many TTKSK-resistant durum lines tested in Kenya became susceptible in Debre Zeit. The Sr9e-Sr13 virulence combination is of particular concern because these two genes constitute major components of stem rust resistance in North American durum cultivars. In addition to Sr9e and Sr13 virulence, race TRTTF is virulent to at least three stem rust resistance genes that are effective to race TTKSK, including Sr36, SrTmp, and resistance conferred by the 1AL.1RS rye translocation. Race TRTTF is the first known race with virulence to the stem rust resistance carried by the 1AL.1RS translocation, which represents one of the few effective genes against TTKSK in winter wheat cultivars in the United States. Durum entries exhibiting resistant to moderately susceptible infection response at the Debre Zeit nursery in 2009 were evaluated for reaction to races JRCQC, TRTTF, and TTKSK at the seedling stage. In all, 47 entries were resistant to the three races evaluated at the seedling stage, whereas 26 entries exhibited a susceptible reaction. These results suggest the presence of both major and adult plant resistance genes, which would be useful in durum-wheat-breeding programs. A thorough survey of virulence in the population of P. graminis f. sp. tritici in Ethiopia will allow characterization of the geographic distribution of the races identified in the Debre Zeit field nursery.


Sign in / Sign up

Export Citation Format

Share Document