scholarly journals Occurrence of Xanthomonas arboricola pv. pruni Causing Bacterial Leaf Spot and Shot-Hole on Peach in Montenegro

Plant Disease ◽  
2020 ◽  
Vol 104 (4) ◽  
pp. 1250-1250
Author(s):  
Renata Iličić ◽  
Tatjana Popović
2017 ◽  
Vol 52 (5) ◽  
pp. 366-369 ◽  
Author(s):  
André Luiz Varago ◽  
Idemir Citadin ◽  
Marcos Robson Sachet ◽  
Gener Augusto Penso ◽  
Maria do Carmo Bassols Raseira

Abstract: The objective of this work was to evaluate the broad-sense heritability reaction to bacterial leaf spot (Xanthomonas arboricola pv. pruni), in peach tree populations obtained from directed crosses. Disease severity and defoliation of the genotypes were evaluated in field conditions, with posterior measurement of the healthy leaf area duration (HAD). The observed average heritability (0.51) indicates that the use of the evaluated genitors can be effective for the development of cultivars with higher resistance to the disease.


Plant Disease ◽  
2020 ◽  
Vol 104 (10) ◽  
pp. 2724-2724
Author(s):  
Cansu Oksel ◽  
Farhat A. Avin ◽  
Terri Simmons ◽  
Fulya Baysal-Gurel

Plant Disease ◽  
2018 ◽  
Vol 102 (8) ◽  
pp. 1654-1654 ◽  
Author(s):  
I. Schwarczinger ◽  
Z. Bozsó ◽  
Á. Szatmári ◽  
S. Süle ◽  
Z. Szabó ◽  
...  

2011 ◽  
Vol 68 (1) ◽  
pp. 57-61 ◽  
Author(s):  
José Gilberto Sousa Medeiros ◽  
Idemir Citadin ◽  
Idalmir dos Santos ◽  
André Paulo Assmann

Bacterial leaf spot (BLS), caused by Xanthomonas arboricola pv. pruni, is one of the most important diseases in Brazilian peach [Prunus persica (L.) Batsch] orchards and all over the world. The main objective of this study was to evaluate for BLS sensitivity of peach genotypes. Evaluations of thirty genotypes were carried out during the onset of the disease, for incidence, severity and defoliation, in field conditions. Pearson's correlations between the percentage of defoliation and leaf severity rating were performed. Genotypes 'Conserva 985', 'Conserva 871', 'Conserva 1129', and 'Tropic Snow', as resistance sources, and 'Conserva 1153', 'Bonão', 'Conserva 1125', and 'Atenas', as susceptible to BLS, were submitted to detached-leaf bioassay and greenhouse evaluation. The peach genotypes showed different reactions to the BLS, and none was immune to the pathogen. 'Conserva 985' and 'Conserva 1129' confirmed resistance responsiveness while 'Conserva 1153', 'Conserva 1125' and 'Atenas' were found susceptible for the detached-leaf bioassay.


2018 ◽  
Vol 40 (2) ◽  
pp. 299-305 ◽  
Author(s):  
Berhanu Lemma Robe ◽  
Cheng’an Wang ◽  
Zhixiang Zhang ◽  
Shifang Li

Plant Disease ◽  
2011 ◽  
Vol 95 (1) ◽  
pp. 74-74 ◽  
Author(s):  
G. Marchi ◽  
T. Cinelli ◽  
G. Surico

In June 2010, 1-year-old potted plants of cherry laurel (Prunus laurocerasus L.) cv. Novita showing leaf spot symptoms were collected in a commercial nursery in the district of Pistoia (Tuscany, central Italy). Red-purple necrotic lesions (measuring a few millimeters up to 1 cm) surrounded by a brilliant light green halo were observed on the abaxial surface of symptomatic leaves. With age, the necrotic areas drop out, leaving a “shot-hole” appearance. Microscopic observation revealed the absence of fungal structures, whereas bacteria were isolated from symptomatic tissue on nutrient sucrose agar medium. Purified single colonies appeared mucoid, convex, and yellow on yeast extract-dextrose-CaCO3 agar (YDCA) medium, were positive to the KOH test, and induced hypersensitive responses on tobacco (cv. Virginia Bright). Three isolates were selected arbitrarily for further analysis. A fragment of approximately 500 bp of the 16S rRNA gene was amplified via PCR with the universal primer pair 27f/519r and sequenced. Subsequent database searches in the INSD (GenBank, EMBL, and DDBJ) indicated that the resulting sequences had 100% identity over 490 bp with the corresponding gene of a Xanthomonas sp. The isolates were further identified as Xanthomonas arboricola pv. pruni on the basis of quinate metabolism and starch hydrolysis tests and by sequencing the PCR products obtained with the gyrB (4) and X. arboricola pv. pruni-specific (3) primer sets. Pathogenicity tests were conducted on cvs. Novita and Caucasica following the detached leaf bioassay procedure (1) and by injecting with a hypodermic needle a bacterial suspension (1 × 107 CFU/ml) in the leaf mesophyll of 1-year-old potted plants (three plants per cultivar and three leaves per isolate on each plant). Incubation was carried out at 25°C under fluorescent lights with a 16-h photoperiod. After seven (detached leaves) and four (potted plants) days, all leaves inoculated with X. arboricola pv. pruni isolates showed brown necrotic spots delimited by a chlorotic margin. Reisolated bacteria on YDCA showed the same colony morphology as described above and tested positive to the X. arboricola pv. pruni-specific primer set, confirming the causal agent of the disease. Leaf tissue inoculated with sterile distilled water remained symptomless. Bacterial leaf spot on cherry laurel was reported in Lombardy (northern Italy) by the local plant protection service in 2005 but without a confirmatory diagnosis of the causal agent (2). To our knowledge, this is the first confirmed report on the occurrence of X. arboricola pv. pruni on cherry laurel in Italy. The pathogen could have a significant impact on the commercial cherry laurel production in the district of Pistoia, which is the most important area for ornamental plants nurseries (4,536 ha of cultivated surface in 2005) in Italy. X. arboricola pv. pruni is included in the EPPO A2 list of pests recommended for regulation to the member countries. References: (1) Anonymous. EPPO Bull. 36:129, 2006. (2) EPPO Reporting Service. Online publication. Retrieved from archives.eppo.org/EPPOReporting/2006/Rse-0606.pdf , 2006. (3) M. C. Pagani. Ph.D. diss. North Carolina State University. Online publication. http://repository.lib.ncsu.edu/ir/bitstream/1840.16/4540/1/etd.pdf , 2004. (4) N. Parkinson et al. Int. J. Syst. Evol. Microbiol. 59:264, 2009.


Plant Disease ◽  
2017 ◽  
Vol 101 (7) ◽  
pp. 1222-1229 ◽  
Author(s):  
E. A. Newberry ◽  
L. Ritchie ◽  
B. Babu ◽  
T. Sanchez ◽  
K. A. Beckham ◽  
...  

Bacterial leaf spot of watermelon caused by Pseudomonas syringae has been an emerging disease in the southeastern United States in recent years. Disease outbreaks in Florida were widespread from 2013 to 2014 and resulted in foliar blighting at the early stages of the crop and transplant losses. We conducted a series of field trials at two locations over the course of two years to examine the chemical control options that may be effective in management of this disease, and to investigate the environmental conditions conducive for bacterial leaf spot development. Weekly applications of acibenzolar-S-methyl (ASM) foliar, ASM drip, or copper hydroxide mixed with ethylene bis-dithiocarbamate were effective in reducing the standardized area under the disease progress curve (P < 0.05). Pearson’s correlation test demonstrated a negative relationship between the average weekly temperature and disease severity (–0.77, P = 0.0002). When incorporated into a multiple regression model with the square root transformed average weekly rainfall, these two variables accounted for 71% of the variability observed in the weekly disease severity (P < 0.0001). This information should be considered when choosing the planting date for watermelon seedlings as the cool conditions often encountered early in the spring season are conducive for bacterial leaf spot development.


Plant Disease ◽  
1997 ◽  
Vol 81 (8) ◽  
pp. 892-896 ◽  
Author(s):  
E. L. Little ◽  
S. T. Koike ◽  
R. L. Gilbertson

Pseudomonas syringae pv. apii, causal agent of bacterial leaf spot (BLS) of celery, was first identified in California in 1989. By 1991, BLS was apparent in all celery-growing areas of the state. Greenhouse-produced transplants were affected most severely, and disease incidence approached 100% in some greenhouses. In this study, sources of inoculum and factors contributing to disease development were investigated in three Salinas Valley greenhouse operations during the 1991, 1992, and 1993 celery transplant seasons (January to August). Epiphytic P. syringae pv. apii was not detected on celery transplants until April or May of each year. Increased epiphytic populations preceded BLS outbreaks, and high-pressure, overhead irrigation favored bacterial infiltration and disease development. In seed-wash assays, P. syringae pv. apii was recovered from 5 of 24 commercial celery seed lots. In field tests, epiphytic P. syringae pv. apii was found on umbels of inoculated celery plants, and seeds from these plants were heavily contaminated with P. syringae pv. apii. Contaminated seed produced seedlings with large epiphytic P. syringae pv. apii populations. Hot-water treatment (50°C for 25 min) eliminated >99.9% of seed contamination. Based on these results, disease management techniques are proposed.


Sign in / Sign up

Export Citation Format

Share Document