Assessing and minimizing the development and spread of fire blight following mechanical thinning and pruning in apple orchards

Plant Disease ◽  
2020 ◽  
Author(s):  
Anna Wallis ◽  
Mario R. Miranda-Sazo ◽  
Kerik Cox

The adoption of mechanical thinning and pruning in commercial apple orchards has largely been limited by the risk of development and spread of fire blight. This devastating disease, caused by the bacterial pathogen Erwinia amylovora, may be transmitted by mechanical injury such as pruning, especially under warm, moist conditions conducive to bacterial growth, infection, and disease development. However, risk may be mitigated by avoiding highest risk times and applying a bactericide, such as streptomycin, following mechanical thinning or pruning. In ‘Gala’ and ‘Idared’ orchards, we evaluated the risk of fire blight development and spread following mechanical thinning early in bloom (20% bloom), when seasonal temperatures are cooler and there are few open flowers available for infection. In both orchards, we also evaluated the spread and development of fire blight by mechanical pruning in July and in August, before and after terminal bud set when shoot growth is slowed and less susceptible to infection. We also assessed the potential efficacy of a streptomycin or Bacillus subtilis biopesticide application following mechanical thinning and pruning to mitigate the spread of fire blight. In the ‘Gala’ orchard, disease never developed beyond the inoculated tree following thinning or pruning, which was unexpected for this highly susceptible cultivar. In the ‘Idared’ orchard, incidence of blossom or shoot blight from the point source, represented as relative area under the disease progress curve (rAUDPC) was rarely different for trees that received mechanical thinning or mechanical pruning compared to untreated trees, and was frequently eliminated or reduced when the antibiotic streptomycin or the B. subtilis biopesticide was applied within 24 h of mechanical thinning or pruning. For both thinning and pruning, incidence of fire blight dropped off quickly beyond the inoculated tree in the ‘Idared’ orchard and generally was not observed in trees beyond 10-15 m from the inoculated point source or predicted beyond 10 m by exponential and power law models fit to the disease progress curves. The results of this work demonstrate the low risk for fire blight development and spread by mechanical thinning and pruning when practiced under low-risk conditions—early in bloom for mechanical thinning, and after terminal bud set (in August) for mechanical pruning—especially when paired with a subsequent bactericide application. This study demonstrates the safe use of mechanical thinning and pruning in commercial apple production, corroborated by anecdotal evidence from apple growers in Western New York State.

HortScience ◽  
2009 ◽  
Vol 44 (3) ◽  
pp. 862-865 ◽  
Author(s):  
Henry K. Ngugi ◽  
James R. Schupp

The risk of spreading fire blight in apples after mechanical thinning with a rotating string blossom thinner was evaluated in field and potted-tree experiments. In the field experiment, using the mechanical thinner on noninoculated trees immediately after operating the equipment on inoculated trees significantly (P < 0.01) increased fire blight incidence resulting in 90 ± 20.01 (mean ± SE) infected shoots compared with 23.5 ± 8.97 diseased shoots in similar trees that were not thinned mechanically. A similar result was obtained in greenhouse experiments whereby healthy apple plants positioned adjacent to diseased plants before the group was subjected to the mechanical thinner developed more than twice the number of infected shoots as that on similar plants that were not thinned. These results indicate that under conditions conducive to infection, the mechanical blossom thinner significantly increases the risk of spreading Erwinia amylovora. The use of the thinner should therefore be limited to orchards with no history of disease in the last 3 years and on days when predicted weather is not suitable for tree infection by E. amylovora; otherwise, a severe fire blight epidemic could develop in the orchard.


2005 ◽  
Vol 95 (10) ◽  
pp. 1200-1208 ◽  
Author(s):  
Jorge L. Andrade-Piedra ◽  
Robert J. Hijmans ◽  
Henry S. Juárez ◽  
Gregory A. Forbes ◽  
Dani Shtienberg ◽  
...  

LATEBLIGHT, a mathematical model that simulates the effect of weather, host growth and resistance, and fungicide use on asexual development and growth of Phytophthora infestans on potato foliage, was validated for the Andes of Peru. Validation was needed due to recent modifications made to the model, and because the model had not been formally tested outside of New York State. Prior to validation, procedures to estimate the starting time of the epidemic, the amount of initial inoculum, and leaf wetness duration were developed. Observed data for validation were from field trials with three potato cultivars in the Peruvian locations of Comas and Huancayo in the department of Junín, and Oxapampa in the department of Pasco in 1999 and 2000 for a total of 12 epidemics. These data had not been used previously for estimating model parameters. Observed and simulated epidemics were compared graphically using disease progress curves and numerically using the area under the disease progress curve in a confidence interval test, an equivalence test, and an envelope of acceptance test. The level of agreement between observed and simulated epidemics was high, and the model was found to be valid according to subjective and objective performance criteria. The approach of measuring fitness components of potato cultivars infected with isolates of a certain clonal lineage of P. infestans under controlled conditions and then using the experimental results as parameters of LATEBLIGHT proved to be effective. Fungicide treatments were not considered in this study.


2017 ◽  
Vol 18 (3) ◽  
pp. 162-165 ◽  
Author(s):  
Robert S. Emmitt ◽  
James W. Buck

Production nurseries and daylily hybridizers in the southeast United States rely on the use of fungicides to manage daylily rust, caused by the fungus Puccinia hemerocallidis. Foliar sprays of pyraclostrobin, flutolanil, tebuconazole, myclobutanil, chlorothalonil, mancozeb, pyraclostrobin + boscalid, flutolanil + tebuconazole, flutolanil + myclobutanil, flutolanil + chlorothalonil, and flutolanil + mancozeb applied on 14-day intervals, and a nontreated control, were evaluated under high disease pressure at three locations in Griffin, GA, in 2015. Tebuconazole or the tebuconazole + flutolanil treatment consistently had the lowest area under the disease progress curve (AUDPC) of the treatments. The addition of flutolanil to chlorothalonil or mancozeb did not improve rust control and no difference in disease severity was observed in any treatment containing contact fungicides on all assessment dates. Single application costs ranged from $10.21 to $95.96 with tebuconazole providing excellent disease management at a relatively low cost per application ($13.90).


2019 ◽  
Author(s):  
Kaique dos S Alves ◽  
Willian B Moraes ◽  
Wellington B da Silva ◽  
Emerson M Del Ponte

AbstractThe parameters of the simplest (two-parameter) epidemiological models that best fit plant disease progress curve (DPC) data are the surrogate for initial inoculum (y0) and the (constant) apparent infection rate (r), both being useful for understanding, predicting and comparing epidemics. The assumption thatris constant is not reasonable and fluctuations are expected due to systematic changes in factors affecting infection (e.g. weather favorability, host susceptibility, etc.), thus leading to a time-varyingr, orr(t). An arrangement of these models (e.g. logistic, monomolecular, etc.) can be used to obtainrbetween two time points, given the disease (y) data are available. We evaluated a data assimilation technique, Particle Filter (PF), as an alternative method for estimatingr(t). Synthetic DPC data for a hypothetical polycyclic epidemics were simulated using the logistic differential equation for scenarios that combined five patterns ofr(t) (constant, increasing, decreasing, random or sinusoidal); five increasing time assessment interval (Δt= 1, 3, 5, 7 or 9 time units - t.u.); and two levels of noise (α = 0.1 or 0.25) assigned toy(t). The analyses of 50 simulated 60-t.u. DPCs showed that the errors of PF-derivedwere lower (RMSE < 0.05) for Δt< 5 t.u. and least affected by the presence of noise in the measure compared with the logit-derivedr(t). The ability to more accurately estimater(t) using the novel method may be useful to increase knowledge of field epidemics and identify within-season drivers that may explainr(t) behaviour.


Plant Disease ◽  
2021 ◽  
Author(s):  
Ravi Bika ◽  
Warren Copes ◽  
Fulya Baysal-Gurel

Calonectria pseudonaviculata and Pseudonectria foliicola causing the infamous ‘boxwood blight’ and ‘Volutella blight’, respectively, are a constant threat to the boxwood production and cut boxwood greenery market. Both pathogens cause significant economic loss to all parties (growers, retailer, and customers) in the horticultural chain. The objective of this study was to evaluate efficacy of disinfesting chemicals [quaternary ammonium compound (QAC), peroxy, acid, alcohol, chlorine, cleaner] in preventing plant-to-plant transfer of C. pseudonaviculata and P. foliicola via cutting tools, as well as reduction of postharvest boxwood blight and Volutella blight disease severity in harvested boxwood greenery. First, an in vitro study was conducted to select products and doses that completely or near-completely inhibited conidial germination of C. pseudonaviculata and P. foliicola. The selected treatments were also tested for their ability to reduce plant-to-plant transfer of C. pseudonaviculata and P. foliicola and manage postharvest boxwood blight and Volutella blight in boxwood cuttings. For the plant-to-plant transfer study, Felco 19 shears were used as a tool for mechanical transfer of fungal conidia. The blades of Felco 19 shears were exposed to a conidial suspension of C. pseudonaviculata or P. foliicola by cutting a 1 cm diameter cotton roll that had been dipped into a fungal suspension. Disease-free boxwood rooted cuttings (10 cm height) were pruned with the contaminated shears. The Felco 19 shears were equipped with a mounted miniature sprayer connected to a pressurized reservoir of treatment solution that automatically sprayed the blade and plant surface while cutting. The influence of accumulated sap on the shear blade was studied through 1- or 10-cut pruning variable on test plants and screened for the efficacy of treatments. Then, the boxwood rooted cuttings were transplanted and incubated in room conditions (21 °C, 60% RH) with 12 h of fluorescent light; data evaluation on disease severity was done weekly for a month. Disease progress [area under disease progress curve (AUDPC)] was calculated. In another study, postharvest dip application treatments were used for the management of postharvest boxwood blight or Volutella blight on boxwood cuttings. The harvested boxwood cuttings were inoculated with a conidial suspension of C. pseudonaviculata or P. foliicola, then dipped into treatment solution 3 days afterwards. The treated boxwood cuttings were kept in room conditions, and boxwood blight or Volutella blight disease severity as well as marketability (postharvest shelf life) assessed every 2 days for 1 week. A significant difference between treatments was observed for reduction of boxwood blight or Volutella blight severity and AUDPC. The treatments (ODD + DoD + DdD + DB)AC [Simple Green D Pro 5], 2 propanol + DDAC (0.12%) [KleenGrow], and DBAC + DEAC [GreenShield] were the most effective in reducing the plant to plant transfer of boxwood blight and Volutella blight when pruned with contaminated Felco 19 shears. In addition to the three effective treatments above, acetic acid (2.5%) [Vinegar], 2-propanol + DDAC (0.06%), sodium hypochlorite (Clorox) and potassium peroxymonosulfate + NaCl (2%) [Virkon] were effective in reducing postharvest boxwood blight whereas DBAC + DBAC [Lysol all-purpose cleaner], ethanol [70% (Ethyl alcohol)] and DDAC +DBAC [Simple Green D Pro 3 plus] were effective in reducing Volutella blight disease severity and AUDPC, and also maintained better quality and longer postharvest shelf life of boxwood cuttings when applied as a dip treatment. The longer postharvest shelf life of boxwood cuttings noted may be attributed to reduced disease severity and AUDPC resulting in healthy boxwood cuttings.


2003 ◽  
Vol 28 (3) ◽  
pp. 273-278 ◽  
Author(s):  
Cláudia V. Godoy ◽  
Lílian Amorim ◽  
Armando Bergamin Filho ◽  
Herbert P. Silva ◽  
Willian J. Silva ◽  
...  

The progress of the severity of southern rust in maize (Zea mays) caused by Puccinia polysora was quantified in staggered plantings in different geographical areas in Brazil, from October to May, over two years (1995-1996 and 1996-1997). The logistic model, fitted to the data, better described the disease progress curves than the Gompertz model. Four components of the disease progress curves (maximum disease severity; area under the disease progress curve, AUDPC; area under the disease progress curve around the inflection point, AUDPCi; and epidemic rate) were used to compare the epidemics in different areas and at different times of planting. The AUDPC, AUDPCi, and the epidemic rate were analyzed in relation to the weather (temperature, relative humidity, hours of relative humidity >90%, and rainfall) and recorded during the trials. Disease severity reached levels greater than 30% in Piracicaba and Guaíra in the plantings between December and January. Lower values of AUDPC occurred in later plantings at both locations. The epidemic rate was positively correlated (P < 0.05) with the mean daily temperatures and negatively correlated with hours of relative humidity >90%. The AUDPC was not correlated with any weather variable. The AUDPCi was negatively related to both variables connected to humidity, but not to rain. Long periods (mostly >13 h day-1) of relative humidity >90% (that corresponded to leaf wetness) occurred in Castro. Severity of southern rust in maize has always been low in Castro, thus the negative correlations between disease and the two humidity variables.


2019 ◽  
Vol 20 (3) ◽  
pp. 165-169 ◽  
Author(s):  
Katelyn E. Goldenhar ◽  
Mary K. Hausbeck

Michigan growers rely on fungicides to limit cucurbit downy mildew (CDM), incited by Pseudoperonospora cubensis; resistance of the pathogen to fungicides is a concern. We evaluated fungicides against CDM in Michigan field studies from 2015 to 2017. According to the relative area under the disease progress curve (rAUDPC), in 2015, mandipropamid, propamocarb, fluxapyroxad/pyraclostrobin, copper octanoate, and dimethomorph resulted in disease levels similar to the control. These treatments, along with cymoxanil, were similar to the control in 2016. Fungicides that were ineffective during 2015 and 2016 did not limit CDM in 2017. Famoxadone/cymoxanil and fluopicolide did not limit CDM in 2017. Each year, the following treatments were similar for disease based on rAUDPC data: oxathiapiprolin applied alone or premixed with chlorothalonil or mandipropamid, ametoctradin/dimethomorph, fluazinam, mancozeb/zoxamide, cyazofamid, and ethaboxam. An exception occurred in 2017, when ethaboxam was less effective than fluazinam, oxathiapiprolin/chlorothalonil, and oxathiapiprolin/mandipropamid. Mancozeb and chlorothalonil treatments were similar in 2015 and 2017, according to rAUDPC data. In 2017, yields were increased for oxathiapiprolin/chlorothalonil, oxathiapiprolin/mandipropamid, mancozeb, ametoctradin/dimethomorph, mancozeb/zoxamide, ethaboxam, cyazofamid, chlorothalonil, and fluazinam compared with the untreated control.


Sign in / Sign up

Export Citation Format

Share Document