scholarly journals Phylogeny, Morphology, Distribution, and Pathogenicity of Botryosphaeriaceae and Diaporthaceae from English Walnut in California

Plant Disease ◽  
2014 ◽  
Vol 98 (5) ◽  
pp. 636-652 ◽  
Author(s):  
ShuaiFei Chen ◽  
David P. Morgan ◽  
Janine K. Hasey ◽  
Kathleen Anderson ◽  
Themis J. Michailides

Species of family Botryosphaeriaceae and genus Diaporthe (anamorph: genus Phomopsis, family Diaporthaceae) were reported and caused diseases on various fruit and nut trees in California. In the last several years, diseases on English walnut (Juglans regia) caused by species of Botryosphaeriaceae and Diaporthe were observed frequently in California. Disease symptoms include stem canker; shoot canker and blight; twig, leaf, and fruit blight; and necrotic leaf lesions. Isolates of the pathogen were collected from English walnut in 13 counties in California. The aims of this study were to identify these isolates and to test their pathogenicity to English walnut cultivars. In total, 159 California isolates were identified based on comparisons of DNA sequence data of the internal transcribed spacer, translation elongation factor 1-α, and β-tubulin gene regions, and combined with the morphological features of the cultures and conidia. Research results revealed that isolates represent 10 species of Botryosphaeriaceae and two species of Diaporthe. These species include Botryosphaeria dothidea, Diplodia mutila, D. seriata, Dothiorella iberica, Lasiodiplodia citricola, Neofusicoccum mediterraneum, N. nonquaesitum, N. parvum, N. vitifusiforme, Neoscytalidium dimidiatum, Diaporthe neotheicola, and D. rhusicola. Pathogenicity on three English walnut cultivars (‘Chandler’, ‘Tulare’, and ‘Vina’) using a mycelium plug inoculation method revealed that all these species are pathogenic to all the tested cultivars, with L. citricola and N. parvum being the most pathogenic species, followed by N. mediterraneum, N. dimidiatum, and B. dothidea. Chandler was more tolerant to infection than Tulare and Vina. Results in this study determined that multiple numbers of the Botryosphaeriaceae fungi and two Diaporthe spp. cause cankers and blights of English walnut and vary in their virulence from highly to slightly virulent, respectively.

PeerJ ◽  
2018 ◽  
Vol 6 ◽  
pp. e4300 ◽  
Author(s):  
Ian Drake ◽  
James F. White Jr ◽  
Faith C. Belanger

The grass Ammophila breviligulata (American beachgrass) is known to host an endophyte of the genus Epichloë. Based on morphological characteristics it was originally identified as Acremonium typhinum var. ammophilae and is currently designated as Epichloë typhina var. ammophilae. However, the Epichloë species has not previously been identified based on DNA sequence data. Based on phylogenetic placement of beta-tubulin and translation elongation factor 1-alpha DNA sequences the endophyte is identified as a member of E. amarillans rather than E. typhina.


Phytotaxa ◽  
2019 ◽  
Vol 422 (2) ◽  
pp. 157-174 ◽  
Author(s):  
HAO ZHOU ◽  
CHENG-LIN HOU

In the present study, nine endophytic strains of Diaporthe from China were identified based on analyses of morphological characters and combined sequences of rDNA ITS, partial sequences from the translation elongation factor 1-α (tef1), β tubulin (tub2), histone H3 (his3), and calmodulin (cal) genes. Three new Diaporthe species, Diaporthe anhuiensis, Diaporthe huangshanensis and Diaporthe shennongjiaensis, are introduced in this paper with full descriptions and comparison with similar taxa. And two other known species, Diaporthe citrichinensis and Diaporthe eres are also described.


2010 ◽  
Vol 100 (12) ◽  
pp. 1340-1351 ◽  
Author(s):  
Juan Moral ◽  
Concepción Muñoz-Díez ◽  
Nazaret González ◽  
Antonio Trapero ◽  
Themis J. Michailides

Species in the family Botryosphaeriaceae are common pathogens causing fruit rot and dieback of many woody plants. In this study, 150 Botryosphaeriaceae isolates were collected from olive and other hosts in Spain and California. Representative isolates of each type were characterized based on morphological features and comparisons of DNA sequence data of three regions: internal transcribed spacer 5.8S, β-tubulin, and elongation factor. Three main species were identified as Neofusicoccum mediterraneum, causing dieback of branches of olive and pistachio; Diplodia seriata, causing decay of ripe fruit and dieback of olive branches; and Botryosphaeria dothidea, causing dalmatian disease on unripe olive fruit in Spain. Moreover, the sexual stage of this last species was also found attacking olive branches in California. In pathogenicity tests using unripe fruit and branches of olive, D. seriata isolates were the least aggressive on the fruit and branches while N. mediterraneum isolates were the most aggressive on both tissues. Isolates of B. dothidea which cause dalmatian disease on fruit were not pathogenic on branches and only weakly aggressive on fruit. These results, together with the close association between the presence of dalmatian disease symptoms and the wound created by the olive fly (Bactrocera oleae), suggest that the fly is essential for the initiation of the disease on fruit. Isolates recovered from dalmatian disease symptoms had an optimum of 26°C for mycelial growth and 30°C for conidial germination, suggesting that the pathogen is well adapted to high summer temperatures. In contrast, the range of water activity in the medium for growth of dalmatian isolates was 0.93 to 1 MPa, which was similar to that for the majority of fungi. This study resolved long-standing questions of identity and pathogenicity of species within the family Botryosphaeriaceae attacking olive trees in Spain and California.


Plant Disease ◽  
2019 ◽  
Vol 103 (6) ◽  
pp. 1156-1165 ◽  
Author(s):  
M. A. Bautista-Cruz ◽  
G. Almaguer-Vargas ◽  
S. G. Leyva-Mir ◽  
M. T. Colinas-León ◽  
K. C. Correia ◽  
...  

Persian lime (Citrus latifolia Tan.) is an important and widely cultivated fruit crop in several regions of Mexico. In recent years, severe symptoms of gummosis, stem cankers, and dieback were detected in the Persian lime-producing region in the states of Veracruz and Puebla, Mexico. The aims of this study were to identify the species of Lasiodiplodia associated with these symptoms, determine the distribution of these species, and test their pathogenicity and virulence on Persian lime plants. In 2015, symptomatic samples were collected from 12 commercial Persian lime orchards, and 60 Lasiodiplodia isolates were obtained. Fungal identification of 32 representative isolates was performed using a phylogenetic analysis based on DNA sequence data of the internal transcribed spacer region and part of the translation elongation factor 1-α and β-tubulin genes. Sequence analyses were carried out using the Maximum Likelihood and Bayesian Inference methods. Six Lasiodiplodia species were identified as Lasiodiplodia pseudotheobromae, Lasiodiplodia theobromae, Lasiodiplodia brasiliense, Lasiodiplodia subglobosa, Lasiodiplodia citricola, and Lasiodiplodia iraniensis. All Lasiodiplodia species of this study are reported for the first time in association with Persian lime in Mexico and worldwide. L. pseudotheobromae (46.9% of isolates) was the most frequently isolated species followed by L. theobromae (28.1%) and L. brasiliense (12.5%). Pathogenicity on Persian lime young plants using a mycelial plug inoculation method showed that all identified Lasiodiplodia species were able to cause necrotic lesions and gummosis, but L. subglobosa, L. iraniensis, and L. pseudotheobromae were the most virulent.


Phytotaxa ◽  
2016 ◽  
Vol 260 (2) ◽  
pp. 101 ◽  
Author(s):  
CHANG SUN KIM ◽  
JONG WON JO ◽  
YOUNG-NAM KWAG ◽  
GI-HO SUNG ◽  
JAE-GU HAN ◽  
...  

Thirty-four Lycoperdon specimens from Korea were examined with the internal transcribed spacer (ITS) region of ribosomal DNA sequence data. The result of the ITS sequences phylogenetic analysis indicated that the Korean specimens represented nine different species. To confirm the taxonomic position of these species, we conducted an intensive morphological investigation, and additional phylogenetic investigation of the protein coding regions RNA polymerase subunit II (RPB2) and translation elongation factor 1-alpha (TEF1). We discovered two new species (L. albiperidium and L. subperlatum) and one (L. ericaeum) newly discovered in Korea. Lycoperdon albiperidium is closely related to L. ericaeum based on ITS, RPB2 and TEF1 sequence data, but these species were distinguishable by morphological characteristics, especially the shape of the basidiocarps, the diameter of the eucapillitial threads and the size of the basidospores. Lycoperdon subperlatum is quite similar to the European and American L. perlatum based on morphological characteristics. However, L. subperlatum is clearly distinct from European and American L. perlatum based on ITS, RPB2 and TEF1 sequence data, and somewhat differs from them in macro- and microscopic characteristics. Based on morphological characteristics, L. ericaeum is related to L. subumbrinum and L. lividum but it is distinguishable by the presence of fragile, eucapillitial threads, the diameters of the threads and ITS sequences. Here, we describe four Lycoperdon species collected in Korea.


MycoKeys ◽  
2018 ◽  
Vol 35 ◽  
pp. 1-25 ◽  
Author(s):  
Yu Pei Tan ◽  
Pedro W. Crous ◽  
Roger G. Shivas

Several unidentified specimens of Curvularia deposited in the Queensland Plant Pathology Herbarium were re-examined. Phylogenetic analyses based on sequence data of the internal transcribed spacer region, partial fragments of the glyceraldehyde-3-phosphate dehydrogenase and the translation elongation factor 1-α genes, supported the introduction of 13 novel Curvularia species. Eight of the species described, namely, C.beasleyi sp. nov., C.beerburrumensis sp. nov., C.eragrosticola sp. nov., C.kenpeggii sp. nov., C.mebaldsii sp. nov., C.petersonii sp. nov., C.platzii sp. nov. and C.warraberensis sp. nov., were isolated from grasses (Poaceae) exotic to Australia. Only two species, C.lamingtonensis sp. nov. and C.sporobolicola sp. nov., were described from native Australian grasses. Two species were described from hosts in other families, namely, C.coatesiae sp. nov. from Litchichinensis (Sapindaceae) and C.colbranii sp. nov. from Crinumzeylanicum (Amaryllidaceae). Curvulariareesii sp. nov. was described from an isolate obtained from an air sample. Furthermore, DNA sequences from ex-type cultures supported the generic placement of C.neoindica and the transfer of Drechsleraboeremae to Curvularia.


Phytotaxa ◽  
2016 ◽  
Vol 269 (2) ◽  
pp. 90 ◽  
Author(s):  
ZHUO DU ◽  
XIN-LEI FAN ◽  
KEVIN D. HYDE ◽  
QIN YANG ◽  
YING-MEI LIANG ◽  
...  

Diaporthe species are common pathogens, endophytes, or saprobes on a wide range of hosts. During our investigation of forest pathogens, we made collections of Diaporthe species associated with canker and dieback disease of Betula platyphylla and B. albosinensis in Sichuan and Shaanxi provinces in China. Diaporthe betulae sp. nov. and D. betulicola sp. nov. are introduced in this paper, with illustrations, descriptions and support from analysis of ribosomal DNA internal transcribed spacer (ITS), calmodulin (CAL), histone H3 (HIS), translation elongation factor 1-α (TEF1-α) and beta-tubulin (TUB2) sequence data. Diaporthe betulae is characterized by hyaline, ellipsoidal, aseptate, biguttulate, 8.5–11 × 3–4 µm alpha conidia. Diaporthe betulicola is characterized by pycnidial stromata with a single locule with one ostiole per disc. Alpha conidia are hyaline, oblong, aseptate, lack guttules and 9.9–14.7 × 1.3–2.5 µm, and beta conidia are hyaline, spindle-shaped, curved, aseptate and 17–24 × 0.7–1.2 µm.


Phytotaxa ◽  
2017 ◽  
Vol 297 (2) ◽  
pp. 168 ◽  
Author(s):  
ROHIT SHARMA ◽  
GIRISH KULKARNI ◽  
MAHESH S. SONAWANE

The Botryosphaeriales is a cosmopolitan fungal order and genera belonging to it are common opportunistic pathogens which mostly infect woody plants. They cause fruit rot, dieback, trunk rot, canker and similar diseases killing trees of natural forests, plantations and fruit trees. Relatively recently, some new families (including family Aplosporellaceae) had been established within this order delineating from family Botryosphaeriaceae. In the present study, two strains (MMI00067 and MMI00068) were isolated from soil attached to the base of a macrofungal stipe collected from the forest of Anuppur (Amarkantak), Madhya Pradesh, India. Strains were identified by DNA sequence data of four loci viz., internal transcribed spacer (ITS) of rDNA, large subunit rDNA (LSU), translation elongation factor (tef) and partial β-tubulin (βtub). Based on the phylogenetic analysis, a new fungal genus Alanomyces is proposed and is positioned within Aplosporellaceae along with Aplosporella. It is characterized by fast growing, dark greenish-black colony, long neck-like multilocular-papillate, black pycnidia with separate ostiole and small <10 µm in length, cylindrical, hyaline, guttulate spermatia. The genus Alanomyces is phylogenetically distinct from its close relative Aplosporella and proposed herein as a new monotypic genus with A. indica as type species.


Phytotaxa ◽  
2014 ◽  
Vol 170 (1) ◽  
pp. 013 ◽  
Author(s):  
VLADIMÍR ANTONÍN ◽  
IMRE RIMÓCZI ◽  
LAJOS BENEDEK ◽  
VIKTOR PAPP ◽  
János Gergő Szarkándi ◽  
...  

A new species, Melanoleuca juliannae is described from Hungary. Its most outstanding character is the presence of a violaceous-blue colour in the stipe base. Sequence comparisons with other Melanoleuca species revealed highly similar but decolourate members of the species, lacking the remarkable colour of the stipe. These specimens are described as Melanoleuca juliannae var. decolorans based on three collections from the Czech Republic and Italy. Detailed macro- and microscopic descriptions of the new species are given. The position of M. juliannae within subgen. Urticocystis was confirmed by DNA sequence data of the ITS region of the nuclear ribosomal RNA gene cluster and translation elongation factor 1-alpha (tef1). Although intra-individual heterogeneity in ITS region was revealed in some specimens of the type variety, the tef1 sequences lack a similar heterogeneity.


Sign in / Sign up

Export Citation Format

Share Document