scholarly journals First Report of Cladobotryum protrusum causing Cobweb Disease on the Edible Mushroom Coprinus comatus

Plant Disease ◽  
2015 ◽  
Vol 99 (2) ◽  
pp. 287-287 ◽  
Author(s):  
G. Z. Wang ◽  
M. P. Guo ◽  
Y. B. Bian

Coprinus comatus is one of the most commercially important mushrooms in China. Its fruiting body possesses rich nutritional and medicinal value. In November 2013, unusual symptoms were observed on C. comatus on a mushroom farm in Wuhan, Hubei, China. At first, fruiting bodies were covered by white and cobweb-like mycelia. Later, the cap and stipe turned brown or dark before rotting and cracking. The pathogen was isolated from infected tissue of C. comatus. Colonies of the pathogen on potato dextrose agar (PDA) medium first appeared yellowish, followed by an obvious ochraceous or pinkish color. Aerial mycelia grew along the plate wall, cottony, 1 to 4 mm high. Conidiophores were borne on the tops of hyphae, had two to four branches, and were cylindrical, long clavate, or fusiform. Conidia were borne on the tops of the branches of conidiophores, had one to two separates, and were long and clavate. The spores ranged from 15.3 to 22.1 μm long and were 5.1 to 8.3 μm wide, which was consistent with the characteristics of Cladobotryum protrusum (1). The species was identified by ribosomal internal transcribed spacer sequencing. The ribosomal ITS1-5.8S-ITS2 region was amplified from the isolated strain using primers ITS1 and ITS4. A BLAST search in GenBank revealed the highest similarity (99%) to C. protrusum (GenBank Accession Nos. FN859408.1 and FN859413.1). The pathogen was grown on PDA at 25°C for 3 days, and the inoculation suspension was prepared by flooding the agar surface with sterilized double-distilled water for spore suspension (1 × 105 conidia/ml). In one treatment, the suspension was sprayed on casing soil (106 conidia/m2) and mixed thoroughly with it, then cased with treated soil for 2 to 3 cm thickness on the surface of compost in cultivation pots (35 × 25× 12 cm), with sterile distilled water as a control (2). Eight biological replicates were included in this treatment. In the second treatment, mycelia plugs (0.3 × 0.3 cm) without spore production were added to 20 fruiting bodies. Mushrooms treated with blank agar plugs (0.3 × 0.3 cm) were used as a control. The plugs were covered with sterilized cotton balls to avoid loss of moisture. Tested cultivation pots were maintained at 18°C and 85 to 95% relative humidity. In the samples where casing soil was sprayed with conidia suspension, white mildew developed on the pileus, and a young fruiting body grew out from the casing soil. Eventually, the surface of the mushroom was overwhelmed by the mycelia of the pathogen and the pileus turned brown or black. For the other group inoculated with mycelia plugs, only the stipe and pileus inoculated with mycelia turned brown or dark; it rotted and cracked 2 to 3 days later. The symptoms were similar to those observed on the C. comatus cultivation farm. Pathogens re-isolated from pathogenic fruiting bodies were confirmed to be C. protrusum based on morphological characteristics and ITS sequence. To our knowledge, this is the first report of the occurrence of C. protrusum on the edible mushroom C. comatus (3). Based on the pathogenicity test results, C. protrusum has the ability to severely infect the fruiting body of C. comatus. References: (1) K. Põldmaa. Stud. Mycol. 68:1, 2011. (2) F. J. Gea et al. Plant Dis. 96:1067, 2012. (3) W. H. Dong et al. Plant Dis. 97:1507, 2013.

Plant Disease ◽  
2012 ◽  
Vol 96 (9) ◽  
pp. 1374-1374 ◽  
Author(s):  
M. K. Kim ◽  
Y. H. Lee ◽  
K. M. Cho ◽  
J. Y. Lee

Pleurotus eryngii is one of the most commercially important mushrooms in Korea. In May 2009, unusual symptoms were observed in P. eryngii grown in mushroom farms in Changnyeong and Hapcheon, in Gyeong-nam Province, Korea. One of the main symptoms was cobweb-like growth of fungal mycelia over the mushroom surface. Colonies on the surface rapidly overwhelmed the mushrooms, which turned pale brown or yellow. Mushrooms eventually turned dark brown and became rotten. Colonies of the isolates on potato dextrose agar (PDA) were yellowish, and a reddish or orange color was evident in the agar. The colonies grew 20 to 30 mm per day on PDA. Large spores with a single septum were produced on vertically branched conidiophores bearing two to four, mostly three to four, sporogenous cells, ranging from 17.2 to 20.5 μm long and 8.0 to 10.2 μm thick. The shape of the conidia was ellipsoid and obovoid. These morphological characteristics are consistent with descriptions of Cladobotryum mycophilum, a causal agent of cobweb disease in Agaricus bisporus (1,4). To identify the isolated fungal pathogen, the ITS region was amplified with ITS1 and ITS4 primers and sequenced. The sequence data from the isolate was deposited in GenBank (Accession No. JF693809). A BLAST search showed that the isolated strain belonged to a species of Cladobotryum. The highest similarity (99.5%) was to the ITS sequence of C. mycophilum (teleomorph Hypomyces odoratus) (GenBank Accession Nos. JF505112 and Y17096) (3,4). The strain that was tested for pathogenicity was grown on PDA at 25°C for 72 h. The inoculum was prepared by flooding the agar surface with 10 ml of sterilized double distilled water and scraping it with a spatula. The resulting spore suspension was filtered through three layers of cheesecloth. Conidial concentration was adjusted with a hemacytometer to 1 × 106 conidia ml–1. A conidia suspension was inoculated onto each of several stages of mushroom cultivation with a pipette. The control was spotted with double distilled water. In the case of infection during the inoculation and spawn running stages, the fungal mycelia colonized the media and hampered development of the mycelium of P. eryngii. In the regeneration and primordia formation stages of the host, the mycelium of the pathogen covered the surface of the plastic bottle containing the substrates and developed many spores. In the growing and harvesting stages, the surface of mushroom was overwhelmed by the mycelium of the fungal pathogen and turned pale or dark brown, accompanied by cracking of the stipe surface and finally rotting with a foul odor. These symptoms were similar to the observation from natural infection. The symptoms of the cobweb-like disease in A. bisporus (1,2) were observed within 5 to 7 days of inoculation with conidia suspensions of C. mycophilum. Fungi isolated from inoculated mushrooms were shown to be identical, based on phenotypic characteristic, to the inoculated strain used in these pathogenicity tests. No symptoms were observed on controls. To our knowledge, this is the first report on the occurrence of C. mycophilum on the edible mushroom P. eryngii in Korea. Based on the pathogenicity test results, the pathogen could attack P. eryngii in any cultivation stage, making it a potentially serious fungal pathogen in P. eryngii. References: (1) C. G. Back et al. J. Gen. Plant Pathol. 76:232, 2010. (2) R. H. Gaze. Mushroom J. 546:23, 1995. (3) F. J. Gea et al. Plant Dis. 95:1030, 2011. (4) H. M. Grogan and R. H. Gaze. Mycol. Res. 104:357, 2000.


Plant Disease ◽  
2013 ◽  
Vol 97 (11) ◽  
pp. 1507-1507 ◽  
Author(s):  
W. H. Dong ◽  
Y. B. Bian

Coprinus comatus, the shaggy mane, is one of the most popular and widely cultivated edible mushrooms in China. Its young fruiting body has good nutritional and medicinal value as well as a special flavor. In July 2010, an unusual stipe rot symptom was observed in cultivation tunnels in Pingyin county of Shandong Province. The lower part of the stipe was infected and water soaked scab occurred. The scab then expanded, a few mycelia and pink spores emerged on the scab surface, and finally, the stipe decayed and the fruiting body became wilted. The pathogen was isolated from infected tissues of C. comatus and the colonies on CYM were whitish at first, then pink sorus emerged, later forming concentric rings of sporulation. Mycelia were floccose, colorless, slender, and septate. Conidiophores bore upright, nonbranched, and colorless sporogenous cells, and slightly rounded spores were borne on the top and aggregated in pink cephaloid. Conidia were obovoid or obpyriform. Almost all spores were two-celled and one septate, while one was nearly round and the other bore an apex (1). The size of spores ranged from 10 to 21 μm long and 5 to 7 μm wide, which was consistent with the characteristics of Trichothecium roseum (1). The species identification was confirmed by sequencing the ribosomal ITS sequences. The ribosomal ITS1-5.8S-ITS2 region was amplified from the isolated strain using primers ITS1 and ITS4. A BLAST search in GenBank revealed the highest similarity (99%) to T. roseum (JQ434580). Pathogenicity was tested on different parts of 20 fruiting bodies of C. comatus with or without the wound treatment. One inoculum was prepared by flooding the agar surface with sterilized double distilled water for spore suspension (6.5 × 103 conidia/ml), and the other was by 0.2 × 0.2 cm mycelial plugs without spore production on CYM at 25°C for 5 days. After 1 to 2 days, only inoculated stipes showed water soaked and slight decay on the injured surface of all 20 fruiting bodies, while control fruiting bodies remained healthy. The symptoms were similar to those observed in the cultivation tunnels. No symptom was observed on the pileus, either with or without wound treatment. Pathogens reisolated from the inoculated stipes were confirmed to be T. roseum based on morphological characteristics. Because T. roseum is generally regarded as a postharvest disease of fruits and vegetables such as apple, pear, and muskmelon (2), apples and pears were inoculated with this fungus as well using the same methods. The parts inoculated were sunken, wettish, and decayed with brown stain at 25°C and 90% relative humidity after 5 days. Thus, it was confirmed that the T. roseum from the C. comatus stipe canker could infect the fruits of apple and pear. To our knowledge, this is the first report that T. roseum can cause disease on agaric. References: (1) G. Dal Bello. Australas. Plant Dis. Notes 3:103, 2008. (2) J.-H. Kwon et al. Plant Pathol. J. 26:296, 2010.


Plant Disease ◽  
2011 ◽  
Vol 95 (7) ◽  
pp. 874-874 ◽  
Author(s):  
Y. M. Shen ◽  
C. H. Chao ◽  
H. L. Liu

Gynura bicolor (Roxb. ex Willd.) DC., known as Okinawa spinach or hong-feng-cai, is a commonly consumed vegetable in Asian countries. In May 2010, plants with blight and wilt symptoms were observed in commercial vegetable farms in Changhua, Taiwan. Light brown-to-black blight lesions developed from the top of the stems to the petioles and extended to the base of the leaves. Severely infected plants declined and eventually died. Disease incidence was approximately 20%. Samples of symptomatic tissues were surface sterilized in 0.6% NaOCl and plated on water agar. A Phytophthora sp. was consistently isolated and further plated on 10% unclarified V8 juice agar, with daily radial growths of 7.6, 8.6, 5.7, and 2.4 mm at 25, 30, 35, and 37°C, respectively. Four replicates were measured for each temperature. No hyphal growth was observed at 39°C. Intercalary hyphal swellings and proliferating sporangia were produced in culture plates flooded with sterile distilled water. Sporangia were nonpapillate, obpyriform to ellipsoid, base tapered or rounded, and 43.3 (27.5 to 59.3) × 27.6 (18.5 to 36.3) μm. Clamydospores and oospores were not observed. Oospores were present in dual cultures with an isolate of P. nicotianae (p731) (1) A2 mating type, indicating that the isolate was heterothallic. A portion of the internal transcribed spacer sequence was deposited in GenBank (Accession No. HQ717146). The sequence was 99% identical to that of P. drechsleri SCRP232 (ATCC46724) (3), a type isolate of the species. The pathogen was identified as P. drechsleri Tucker based on temperature growth, morphological characteristics, and ITS sequence homology (3). To evaluate pathogenicity, the isolated P. drechsleri was inoculated on greenhouse-potted G. bicolor plants. Inoculum was obtained by grinding two dishes of the pathogen cultured on potato dextrose agar (PDA) with sterile distilled water in a blender. After filtering through a gauze layer, the filtrate was aliquoted to 240 ml. The inoculum (approximately 180 sporangia/ml) was sprayed on 24 plants of G. bicolor. An equal number of plants treated with sterile PDA processed in the same way served as controls. After 1 week, incubation at an average temperature of 29°C, blight and wilt symptoms similar to those observed in the fields appeared on 12 inoculated plants. The pathogen was reisolated from the lesions of diseased stems and leaves, fulfilling Koch's postulates. The controls remained symptomless. The pathogenicity test was repeated once with similar results. G. bicolor in Taiwan has been recorded to be infected by P. cryptogea (1,2), a species that resembles P. drechsleri. The recorded isolates of P. cryptogea did not have a maximal growth temperature at or above 35°C (1,2), a distinctive characteristic to discriminate between the two species (3). To our knowledge, this is the first report of P. drechsleri being associated with stem and foliar blight of G. bicolor. References: (1) P. J. Ann. Plant Pathol. Bull. 5:146, 1996. (2) H. H. Ho et al. The Genus Phytophthora in Taiwan. Institute of Botany, Academia Sinica, Taipei, 1995. (3) R. Mostowfizadeh-Ghalamfarsa et al. Fungal Biol. 114:325, 2010.


Plant Disease ◽  
2014 ◽  
Vol 98 (3) ◽  
pp. 420-420 ◽  
Author(s):  
S. Chebil ◽  
R. Fersi ◽  
A. Yakoub ◽  
S. Chenenaoui ◽  
M. Chattaoui ◽  
...  

In 2011, common symptoms of grapevine dieback were frequently observed in 2- to 5-year-old table grape (Vitis vinifera L.) cvs. in four vineyards located in northern Tunisia. The symptoms included dead spur and cordons, shoot dieback, and sunken necrotic bark lesions, which progressed into the trunk resulting in the death of large sections of the vine. Longitudinal and transversal sections of cordons and spurs from symptomatic vines revealed brown wedge-shaped cankers of hard consistency. Twelve symptomatic samples from spur and cordons were collected, surface disinfected by dipping into 5% (v/v) sodium hypochlorite for 2 min, and small pieces from the edge of necrotic and healthy tissue were removed and plated onto potato dextrose agar (PDA) at 25°C in the dark. Based on colony and conidia morphological characteristics, isolates were divided in three species, named Diplodia seriata, Botryosphaeria dothidea, and Neofusicoccum luteum. D. seriata colonies were gray-brown with dense aerial mycelium producing brown cylindric to ellipsoid conidia rounded at both ends and averaged 22.4 × 11.7 μm (n = 50). B. dothidea colonies were initially white with abundant aerial mycelium, gradually becoming dark green olivaceous. Conidia were fusiform to fusiform elliptical with a subobtuse apex and averaged 24.8 × 4.7 μm (n = 50). N. luteum colonies were initially pale to colorless, gradually darkening with age and becoming gray to dark gray producing a yellow pigment that diffuses into the agar. Conidia were hyaline, thin-walled, aseptate, fusiform to fusiform elliptical, and averaged 19.8 × 5.5 μm (n = 50). Identity of the different taxa was confirmed by sequence analyses of the internal transcribed spacer (ITS1-5.8S-ITS2) region of the rDNA and part of the elongation factor 1-alpha (EF1-α) gene. BLAST analysis of sequences indicated that six isolates were identified as D. seriata (GenBank: AY259094, AY343353), one isolate as B. dothidea (AY236949, AY786319) and one isolate as N. luteum (AY259091, AY573217). Sequences were deposited in GenBank under accessions from KC178817 to KC178824 and from KF546829 to KF546836 for ITS region and EF1-α gene, respectively. A pathogenicity test was conducted on detached green shoots cv. Italia for the eight Botryosphaeriaceae isolates. Shoots were inoculated by placing a colonized agar plug (5 mm diameter) from the margin of a 7-day-old colony on fresh wound sites made with a sterilized scalpel. Each wound was covered with moisturized cotton and sealed with Parafilm. Control shoots were inoculated using non-colonized PDA plugs. After 6 weeks, discoloration of xylem and phloem and necrosis with average length of 38.8, 17.6, and 11.2 mm were observed from inoculated shoots with D. seriata, N. luteum, and B. dothidea, respectively, and all three fungi were re-isolated from necrotic tissue, satisfying Koch's postulates. Control shoots showed no symptoms of the disease and no fungus was re-isolated. In Tunisia, Botryosphaeria-related dieback was reported only on citrus tree caused by B. ribis (2), on Pinus spp. caused by D. pinea (4), on Quercus spp. caused by D. corticola (3), and on olive tree (Olea europea) caused by D. seriata (1). To our knowledge, this is the first report of D. seriata, B. dothidea, and N. luteum associated with grapevine dieback in Tunisia. References: (1) M. Chattaoui et al. Plant Dis. 96:905, 2012. (2) H. S. Fawcett. Calif. Citrogr. 16:208, 1931. (3) B. T. Linaldeddu et al. J. Plant Pathol. 91:234. 2009. (4) B. T. Linaldeddu et al. Phytopathol. Mediterr. 47:258, 2008.


Plant Disease ◽  
2020 ◽  
Author(s):  
Xue Li ◽  
Jie Li ◽  
Hua Yong Bai ◽  
Kecheng Xu ◽  
Ruiqi Zhang ◽  
...  

Rubber tree (Hevea brasiliensis (Willd. ex Adr. Juss) Müll. Arg.) is used for the extraction of natural rubber and is an economically and socially important estate crop commodity in many Asian countries such as Indonesia, Malaysia, Thailand, India, Sri Lanka, China and several countries in Africa (Pu et al, 2007). Xishuangbanna City and Wenshan City are the main rubber cultivation areas in Yunnan Province, China. In November 2012, rubber tree showing typical wilt symptoms (Fig. 1 A) and vascular stains (Fig. 1 B) were found in Mengla County, Xishuangbanna City. This disease was destructive in these trees and plant wilt death rate reached 5%. The diseased wood pieces (0.5cm long) from trunk of rubber was surface disinfected with 75% ethanol for 30s and 0.1% mercuric chloride (HgCl2) for 2min, rinsed three times with sterile distilled water, plated onto malt extract agar medium (MEA), and incubated at 28℃. After 7 days, fungal-like filaments were growing from the diseased trunk. Six cultures from 6 rubber trunk were obtained and incubated on MEA at 28℃, after 7 days to observe the cultural features. The mycelium of each culture was white initially on MEA, and then became dark green. Cylindrical endoconidia apices rounded, non-septate, smooth, single or borne in chains (8.9 to 23.6 × 3.81 to 6.3μm) (Fig. 1 C). Chlamydospores (Fig. 1 D) were abundant, thick walled, smooth, forming singly or in chains (11.1 to 19.2 × 9.4 to 12.0μm). The mould fungus was identifed as Chalaropsis based on morphology (Paulin-Mahady et al. 2002). PCR amplification was carried out for 3 isolates, using rDNA internal transcribed spacer (ITS) primer pairs ITS1F and ITS4 (Thorpe et al. 2005). The nucleotide sequences were deposited in the GenBank data base and used in a Blast search of GenBank. Blast analysis of sequenced isolates XJm8-2-6, XJm8-2 and XJm10-2-6 (accessions KJ511486, KJ511487, KJ511489 respectively) had 99% identity to Ch. thielavioides strains hy (KF356186) and C1630 (AF275491). Thus the pathogen was identified as Ch. thielavioides based on morphological characteristics and rDNA-ITS sequence analysis. Pathogenicity test of the isolate (XJm8-2) was conducted on five 1-year-old rubber seedlings. The soil of 5 rubber seedlings was inoculated by drenching with 40 ml spore suspension (106 spores / ml). Five control seedlings were inoculated with 40 ml of sterile distilled water. All the seedlings were maintained in a controlled greenhouse at 25°C and watered weekly. After inoculated 6 weeks, all the seedlings with spore suspension produced wilt symptoms, as disease progressed, inoculated leaves withered (Fig. 1 E) and vascular stains (Fig. 1 F) by 4 months. While control seedlings inoculated with sterile distilled water remained healthy. The pathogen re-isolated from all inoculated symptomatic trunk was identical to the isolates by morphology and ITS analysis. But no pathogen was isolated from the control seedlings. The pathogenicity assay showed that Ch. thielavioides was pathogenic to rubber trees. Blight caused on rubber tree by Ceratocystis fimbriata previously in Brazil (Valdetaro et al. 2015), and wilt by Ch. thielavioides was not reported. The asexual states of most species in Ceratocystis are “chalara” or “thielaviopsis” (de Beer et al. 2014). To our knowledge, this is the first report of this fungus causing wilt of rubber in China. The spread of this disease may pose a threat to rubber production in China.


Plant Disease ◽  
2012 ◽  
Vol 96 (12) ◽  
pp. 1824-1824 ◽  
Author(s):  
Y.-H. Wu ◽  
Y.-Q. Zhao ◽  
Y. Fu ◽  
X.-X. Zhao ◽  
J.-G. Chen

In early August 2006, a disease caused severe losses in a 1,400-ha field of 5-month-old tobacco plants in Kuandian and Fengcheng Counties, Dandong City of Liaoning in northeast China. Symptoms were observed on almost every plant. Disease symptoms were subsequently observed at nearly 100% incidence in 2,000 ha of fields from three towns in Kaiyuan County and two towns in Xifeng County, Tieling City, Liaoning Province in the second half of August 2006. Symptoms first appeared on leaves as small (2 mm) water soaked spots, and developed into expanded, dark brown lesions (2 cm) on the middle to lower leaves. Each lesion exhibited concentric rings, a necrotic center, and a tear in the center and margin that often resulted in a shot-hole appearance. Fungal isolates were obtained from the margins of lesions that were surface-sterilized by dipping each leaf section into 75% ethyl alcohol for 3 sec, then in 0.1% HgCl2 for 15 sec, rinsing in sterilized distilled water three times, and plating the leaf section onto half-strength potato dextrose agar (PDA). Six isolates were identified as Rhizoctonia solani Kühn on the basis of mycelial characteristics: multinucleate cells, septate hyphae constricted at the junction of hyphae, and hyphal branching at approximately right angles (3). The sequence of the internal transcribed spacer (ITS) 1-5.8S-ITS2 region of rDNA from each of six isolates was amplified by PCR assay using universal primers ITS1 and ITS4. The sequences (GenBank Accession Nos. JQ219152 to JQ219157) matched 100% with the ITS sequence of an isolate of R. solani AG-3 (GQ885147). Koch's postulates were conducted for each of the six isolates by wound-inoculating six tobacco leaves (cv. NC89) detached from a total of three 8-week-old plants. Each tobacco leaf was first surface-sterilized in 0.5% NaOCl for 30 sec, rinsed in sterilized distilled water, and wounded at each of four locations by inserting a needle into the leaf. Each leaf was inoculated by depositing a PDA plug (0.5 cm diameter) colonized with R. solani onto each of the four wounds; wounded control leaves (six tobacco leaves from a total of three plants) were inoculated similarly with non-colonized PDA plugs. Inoculated leaves were incubated at 28°C in natural light within a plastic container covered with a hyaline cap to maintain high relative humidity. Symptoms similar to those observed on the original plants developed on inoculated leaves within 3 days, but not on the control leaves. The pathogen was reisolated from symptomatic leaves but not from control leaves and showed morphological characteristics consistent with those of R. solani. Tobacco target spot has been recorded in South America (1), South Africa (4), Argentina, and the USA (2). However, to our knowledge, this is the first report of target spot caused by R. solani AG-3 on flue-cured tobacco in China. References: (2) J. S. Johnk et al. Phytopathology 83:854, 1993. (4) H. D. Shew et al. Plant Dis. 69:901, 1985. (1) B. Sneh et al. Identification of Rhizoctonia Species. The American Phytopathological Society, St. Paul, MN, 1991. (3) E. Vargas. Turrialba 23:357, 1973.


Plant Disease ◽  
2021 ◽  
Author(s):  
Donghun Kang ◽  
Jungyeon Kim ◽  
Youn Mi Lee ◽  
Balaraju Kotnala ◽  
Yongho Jeon

In September 2020, typical anthracnose symptoms were observed on cotton (Gossypium indicum Lam.) leaves growing in Hahoe village, Andong, Gyeongbuk Province, Korea. The leaves of the infected plants initially showed spots with halo-lesions which became enlarged and spread to the entire leaf surface area. The infected leaves later became yellowish and chlorotic (Fig. 1A). The disease incidence was at least 90% in the field. For pathogen isolation, fresh samples collected from symptomatic leaves were cut into small pieces (4 to 5 mm2), surface-sterilized in 1% sodium hypochlorite for 1 min, rinsed three times, and macerated in sterile distilled water (SDW). They were spread onto potato dextrose agar (PDA) plates and incubated at 25 °C for 5 days under a 12-h photoperiod. Five isolates were recovered from the infected leaves. Purified fungal colonies were initially white, later turned yellow on PDA medium. Conidia were yellow-colored, smooth-walled, aseptate, straight or slightly distorted, and cylindrical with one end slightly acute or with broadly rounded ends, and with size ranges from 15.3 to 17.5 µm (length) × 4.5 to 5.2 µm (width) (Fig. 1B). The morphological characteristics of the present isolates were consistent with those of Colletotrichum gloeosporioides (Weir et al. 2012). A single isolate, ANUK97, was selected for identification. The multilocus sequence analysis (MLSA) of the actin (ACT), calmodulin (CAL), glyceraldehyde-3-phosphate dehydrogenase (GAPDH), internal transcribed spacer (ITS) rDNA, and β-tubulin (Tub2) were amplified by PCR with the primer pairs of ACT-521F/ACT-783R, CL1C/CL2C, GDF/GDR, ITS1/ITS4, and T1/T2, respectively (White et al. 1990). The resulting sequences were deposited in GenBank under accession numbers MW580367 (ACT), MW580368 (CAL), MW580369 (GAPDH), MW580370 (ITS), and MW580371 (TUB2). A nucleotide BLAST search revealed that ACT, CAL, GAPDH, ITS, and TUB2 sequences be 99% similar to accession numbers MN307380.1, MH155176.1, MK796226.1, MW580370.1, and JX010377.1, respectively of C. theobromicola. Maximum likelihood (ML) phylogenetic analysis was conducted based on a combined dataset of ACT, CAL, GAPDH, ITS, and TUB2 sequences using MEGA-X 10.1.8. The isolate ANUK97 was clustered with a representative strain C. theobromicola CBS124945 100% bootstrap support (Fig. 2). For the pathogenicity test, two-month-old cotton seedlings (n = 10) were inoculated with conidial suspensions (10⁶ spore/mL) of C. theobromicola obtained from 7-day-old PDA cultures at 25 °C by spray method. Seedlings treated with sterile distilled water served as controls. Inoculated and control cotton plants were incubated in the greenhouse at 25 °C under a 12-h photoperiod. After 7 days, necrotic lesions were observed on the artificially inoculated cotton plants, while control plants did not develop any disease symptoms. The pathogen was re-isolated from infected cotton leaves, but not from control plants to fulfill Koch’s postulates. To our knowledge, this is the first report of anthracnose of cotton caused by Colletotrichum theobromicola in Korea.


Plant Disease ◽  
2021 ◽  
Author(s):  
Chengnan Xu ◽  
Dandan Ding ◽  
Xiaolong He ◽  
Bo Liu

Hyjpsizygus marmoreus (Peck) H.E. Bigelow is one of the most popular and widely cultivated edible mushrooms worldwide. In June 2021, an epidemic of H. marmoreus fruiting bodies infected with brown rot occurred at a cultivation facility in Yan’an (Shaanxi province), China, which resulted in a 90% economic loss. The fruiting body surface was covered with white-to-gray velvet-like mycelia, which gradually spread to the pileus, eventually covering the whole fruiting body (Fig. 1A). Brown rot, which is the most important factor limiting H. marmoreus fruiting body yield and quality, is responsible for severe economic losses in northern Shaanxi province. To identify the causal agent of this disease, small pieces of diseased tissue were collected from fruiting bodies, disinfected with 70% ethanol, and rinsed three times with sterile distilled water. They were then placed on potato dextrose agar (PDA) medium in plates and incubated at 26 °C. The colonies on the PDA medium after a 14-day incubation at 26 °C were 40–45 mm in diameter, orange–white on the surface (Fig. 1B), pale orange on the underside (Fig. 1C), slightly wrinkled or cerebriform, and glabrous or fasciculate. Vegetative hyphae were septate, hyaline, smooth, and thin-walled. The unicellular conidia were cylindrical with rounded ends (3.5 to 4.0 × 1.0 to 1.5 μm; n = 30). The cultural and morphological characteristics of the representative isolate MG1 were consistent with those of Sarocladium kiliense (Grütz) Summerbell (Giraldo et al. 2015). For the molecular identification, DNA was extracted from MG1. The internal transcribed spacer (ITS) region, a gene encoding the second largest RNA polymerase II subunit (RPB2), a β-tubulin gene (TUB2), and an actin gene (ACT) were amplified by PCR using primers ITS1/ITS4, fRPB2-5F/fRPB2-7cR, Bt2a/Bt2b, and ACT-512F/ACT-783R, respectively. The resulting ITS (MZ818340), RPB2 (MZ833454), TUB2 (MZ833455), and ACT (MZ833456) sequences from MG1 were 99.82%, 99.19%, 99.69%, and 99.22% identical to the corresponding sequences in S. kiliense isolate CBS 400.52 (ITS: KM231849, RPB2: KM232425, TUB2: KC479789, and ACT1: KM231258). On the basis of the morphological and molecular features, MG1 was identified as S. kiliense (Summerbell et al. 2011; Lombard et al. 2015; Giraldo et al. 2015). Pathogenicity tests, which were repeated three times, were conducted using conidial suspensions (approximately 1 × 105 spores/mL) prepared in sterile distilled water. The surface of 30 healthy H. marmoreus fruiting bodies maintained in a plastic box was sprayed with the MG1 conidial suspensions. Control H. marmoreus fruiting bodies were sprayed with sterile distilled water. The inoculated fruiting bodies were maintained in darkness at 25 °C and 95% relative humidity. The disease symptoms that developed in 3 days included the presence of gray mycelia on the fruiting body surface. Additionally, S. kiliense was reisolated from symptomatic pilei at 6 days post-inoculation. Disease symptoms were undetectable on the negative control. To the best of our knowledge, this is the first report of H. marmoreus infected with brown rot caused by S. kiliense in China.


Plant Disease ◽  
2021 ◽  
Author(s):  
Yue Tian ◽  
Yingying Zhang ◽  
Chaodong Qiu ◽  
Zhenyu Liu

Weigela florida (Bunge) A. DC. is a dense, rounded, deciduous shrub commonly planted in landscapes. It is also used in Chinese medicine to treat sore throat, erysipelas, cold, and fever (Zheng et al. 2019). In May 2019, leaf spots were observed on approximately 50% of W. florida plants grown in the Wisdom Plaza Park of Anhui Agricultural University in Hefei, Anhui Province, China. Leaf spots begun as small light brown and irregular lesions, enlarged, turned reddish brown, coalesced to form large blighted areas, and eventually covered the entire leaf surface. Five pieces of tissues were removed from the lesion margins of each diseased leaf (five leaves from five different plants), chopped into several 3-4 mm2 pieces, disinfected with 1.5% NaOCl for 2 min, rinsed 3 times with sterile distilled water for 1 min, plated onto Potato Dextrose Agar (PDA) medium containing 50 μg/ml of ampicillin and kanamycin, and incubated at 25°C with a 12-hour photoperiod for 5 days. One segment of the fungal growth from the growing edge of the colony was transferred onto a fresh PDA plate for purification and incubated under the same conditions for another 5 days. The colony morphology of one representative isolate (AAU0519) was characterized by a pale orange cushion in the center surrounded by irregular pink margin, diffusing red orange pigments into the PDA medium. Isolate AAU0519 was cultured on PDA medium for 7 days at 25°C in the dark to induce sporulation. The produced conidia were globose, subglobose to pyriform, golden brown to brown, and with a diameter of 7.7 - 23.8 μm. Both cultural and morphological characteristics suggested that isolate AAU0519 was an Epicoccum species, according to the description by Chen et al. 2017. Amplification and sequencing of the internal transcribed spacer (ITS), beta-tubulin, and 28S large subunit ribosomal RNA (LSU) gene fragments from the extracted genomic DNA of AAU0519 were performed using primer sets ITS1/ITS4 (White et al. 1990), Bt2a/Bt2b (Glass and Donaldson 1995), and LSU1Fd/LR5 (Crous et al. 2009; Vilgalys and Hester 1990), respectively. A phylogenetic tree was constructed by the maximum-likelihood method with 1,000 bootstrapping replications based on the concatenated ITS, beta-tubulin, and LSU sequences from isolate AAU0519 and representative strains of 22 species of the genus Epicoccum (Chen et al. 2017). Isolate AAU0519 clustered with ex-holotype CGMCC 3.18362 of Epicoccum layuense Qian Chen, Crous & L. Cai (Chen et al. 2017). All obtained sequences were deposited into GenBank under accession numbers MK983497 (ITS), MN328723 (beta-tubulin), and MN328724 (LSU). A pathogenicity test was conducted on leaves of five 3-year-old W. florida cultivar “Red Prince” planted in the field (five leaves for each treatment and control per plant) by spraying 30 ml of a spore suspension (106 spores/ml) of isolate AAU0519 as treatment or sterilized distilled water as control. Before the inoculation, the leaves were disinfected with 70% ethanol. After inoculation, the leaves were wrapped with a plastic bag to keep high relative humidity. The average air temperature was about 28°C during the period of pathogenicity test. The experiment was repeated once. Ten days after inoculation, the fungal-inoculated leaves developed light brown lesions resembling those of naturally infected leaves, control leaves did not develop any symptoms. E. layuense was recovered from leaf lesions and its identity was confirmed by morphological and sequence analyses as described above. To our knowledge, E. layuense has been previously reported as a pathogen of Perilla sp. (Chen et al. 2017), oat (Avena sativa) (Chen et al. 2019), and tea (Camellia sinensis) plants (Chen et al. 2020), but this is the first report of E. layuense causing leaf spot on W. florida in China. This pathogen could pose a threat to the ornamental value of W. florida plants. Thus, it is necessary to adopt effective management strategies against leaf spot on W. florida.


Plant Disease ◽  
2021 ◽  
Author(s):  
Wentao Qin ◽  
Jun Li ◽  
Zhaoqing Zeng ◽  
Shouxian Wang ◽  
Lin Gao ◽  
...  

Oudemansiella raphanipes is an edible mushroom with medicinal properties,which has been recently cultivated throughout China (Hao et al. 2016). In October 2019, a disease with symptoms similar to that of cobweb disease (Carrasco et al. 2017) was observed in O. raphanipes in the Tongzhou District, Beijing, China, infecting 25% of the fruiting bodies (Fig. 1A, B). White cotton-like net of hyphae were present typically on the casing soil or on the stipe of the fruiting bodies; they gradually spread to the pileus, covering the fruiting body, which eventually wilted and died (Fig. 1C, D), resulting in yield reduction and economic loss. Cultures were obtained by aseptically transferring the diseased fruiting bodies onto potato dextrose agar (PDA) at 25 °C; they were deposited in the culture collection (ID: JZBQA1) of the Beijing Academy of Agricultural and Forestry Sciences, China. The colonies were pale white/white, with an occasional formation of yellow diffusing pigments on the reverse side (Fig. 1E–G). Conidiophores were Cladobotryum-like, phialides were solitary or commonly divergent in whorls of 2–3 (–4), lageniform to subulate, 20–63.5 (–66) × (3.8–) 4–5.3 (–9) μm (n = 40) (Fig. 1H, I); conidia were hyaline, oval to ellipsoidal, with one or two septa, (10.4–) 11.4–20 (–22) × 6.6–9.5 (–10) μm (n = 40) (Fig. 1J); chlamydospores were globose or ellipsoidal (Fig. 1K). The morphological characteristics were consistent with that of Cladobotryum varium (Back et al. 2012a, b; Sun et al. 2019). For species-level fungal identification, genomic DNA was extracted using the DNeasy Plant Mini Kit (Qiagen, USA). The internal transcribed spacer (ITS) regions, translation elongation factor 1 alpha exon (TEF1-α), RNA polymerase II subunit b (RPB2), and RNA polymerase I largest subunit (RPB1) genes were amplified using the primer pairs ITS1/ITS4 (White et al. 1990), EF1-983F/2218R (Rehner and Buckley 2005), RPB2-5F/7cR (Liu et al. 1999), and RPB1F1 (5'-GCCGATGAAGTTGGTCTA-3')/RPB1R1 (5'-TATGTTGCGGTGAGCCTT-3'), respectively. A BLAST nucleotide search showed 99.34% (449/452 bp), 99.24% (914/921 bp), 98.08% (1,022/1,042 bp), and 99.66% (588/590 bp) homology, respectively, with those of the ex-type culture of Hypomyces aurantius TFC 95-171 (FN859425.1, FN868743.1, FN868679.1, and FN868805.1). The four sequences were deposited in GenBank (accession numbers: MW534093, MW560066, MW560064, and MW560065). Phylogenetic trees based on the assessed gene loci revealed that the JZBQA1 strain was closely related to C. varium (Fig. 2). A in vivo pathogenicity test was performed using the fruiting bodies (Fig. 1L, O). Spore suspension (108 spores/mL) of the JZBQA1 strain or sterile distilled water was sprayed on six healthy fruiting bodies, maintained in an artificial climate chamber at 24-26°C. Cobweb-like features were observed on the fruiting bodies treated with the spore suspension 2-3 days post-inoculation; while those treated with water did not exhibit such features (Fig. 1L, O). The same pathogen was re-isolated and confirmed from the infected fruiting bodies by integrated analysis of morphological characteristics and gene sequencing data. Cladobotryum spp. infects different varieties of cultivated edible mushrooms, resulting in the development of cobweb diseases (Cao et al. 2020; Carrasco et al. 2017). Cladobotryum varium is the causal agent of cobweb disease in Flammulina velutipes and Hypsizygus marmoreus (Back et al. 2012a, b). To our knowledge, this is the first report of cobweb disease caused by C. varium in O. raphanipes. This finding is a valuable contribution to the knowledge of cobweb disease development in edible fungi.


Sign in / Sign up

Export Citation Format

Share Document