scholarly journals First Report of Botryosphaeria dothidea Causing Gray Mold on Tartary Buckwheat in Southwest China

Plant Disease ◽  
2021 ◽  
Author(s):  
Yong Tang ◽  
Jun Yan ◽  
Yan Peng ◽  
Wenfeng Weng ◽  
Xin Yao ◽  
...  

Tartary buckwheat (Fagopyrum tataricum, Polygonaceae) is an annual plant originating in Southwest China. It has a short growth cycle, barren soil tolerance, and strong stress resistance (Zhang et al. 2021). Because of its high content of proteins, starch, trace elements, phenols, and dietary fiber, Tartary buckwheat is beneficial to the human body and hence has received widespread attention (Joshi et al. 2019; Dc ja, B, et al. 2020). In the period from September to November 2020, a diseased plant infected with gray mold was found among M2 generation plants treated using ethyl methanesulfonate (EMS) in a location with potted Tartary buckwheat plants in Huaxi District, Guiyang City, Guizhou Province, China. The diseased plant started to show symptoms during the initial flowering stage; water-soaked spots appeared at first, that the spots increased in size and turned into light brown patches, with the leaf edges scorched brown. In severe cases, the leaves turned yellow, the diseased spots became dry, and finally the leaves necrotic (Figure 1A). Among the leaves that showed disease symptoms, severely susceptible leaves were selected; a piece of tissue (2×2 mm) was removed at the junction of the diseased and healthy tissues. The tissue was then soaked in 75% ethanol for 2 to 3 s, transferred to 1% sodium hypochlorite solution and soaked for 3 min, rinsed three times with sterile water, and placed on sterilized filter paper to dry. Sterile tweezers were used to transfer the tissue blocks to Potato Dextrose Agar medium (Bio-Rad Ltd. Com, USA) containing a Streptomyces–Penicillium mixture (100 μg/mL), and they were incubated on this medium for 7 to 10 days at 25°C and 70% humidity under 16 h light and 8 h dark conditions. The colonies were white at the early stages, with developed aerial hyphae; subsequently, they gradually turned gray-green (Figure 1B). In the later stages, the back of the colony was black and piles of conidia could be seen (Figure 1C). The conidia are scattered, which were colorless and transparent, fusiform or fusiform, with a size of 8.02–11.13 μm×2.06–3.22 μm (average=9.51 μm×2.69 μm, n=50) (Figure 1D). Based on their morphological characteristics, These cultural and morphological characteristics were consistent with the descriptions of as B. dothidea (Fan et al. 2021). The ITS1/ITS4 (Mills et al. 1992), Bt-2a/Bt-2b primers (Glass and Donaldson 1995), and EF1-728F/EF1-986R (Slippers et al. 2004) were amplified and sequenced to analyze the ITS region, β-tubulin genes translation elongation factor 1-α (TEF1-α), and translation elongation factor 1-α (TEF1-α), respectively. According to BLAST search in GenBank, the sequences of ITS (MZ326853), TUB2 (MZ399162) and TEF1-α (MZ399163) had 99.40%, 100% and 100% similarity to sequences NR111146.1, AY236927.1, and AY236898.1 of B. dothidea ex-type strain CMW8000, respectively. The three nucleotide sequences were concatenated together, and MEGA-X (with the neighbor-joining method) with 1,000 bootstraps was used to construct a phylogenetic tree. The results showed that our isolate was closely related to B. dothidea (Figure 2). Healthy Tartary buckwheat from the M2 generation was used for the pathogenicity test. Disinfect with 75% alcohol and 1×105 mL-1 of spore suspension was sprayed on the leaves. Each treatment included three plants, and it was repeated three times with sterile water as control. The treatments were kept in a houseat25°C for 24 h, then transferred it to the natural environment of 22℃ to 28℃,and sterile water was sprayed every morning and evening to keep the leaves moist. After 10 days, the symptoms seen in the field appeared on the treated plants (Figure 1E), but the control plants did not show any symptoms (Figure 1F). The diseased parts of the leaves were isolated and cultured again, and the isolates were consistent with the original inoculum. Thus, the study conformed to Koch’s postulates. B. dothidea is a fungus with no host preference in the genus Botryosphaeria (Botryosphaeriaceae, Botryosphaeriales). It can cause canker, leaf spots, trunk diseases, fruit rot and die-back of many important wood plants all over the world (Marsberg et al.2017). Recently, it was reported that B. dothidea caused soybean canker in China (Chen et al.2021), but there have been no reports of B. dothidea causing Tartary buckwheat gray mold. To the best of our knowledge, this is the first report of B. dothidea causing gray mold on Tartary buckwheat. This finding will provide a basis for the prevention and treatment of Tartary buckwheat gray mold.

MycoKeys ◽  
2019 ◽  
Vol 52 ◽  
pp. 71-87
Author(s):  
Sheng-Hua Wu ◽  
Chia-Ling Wei ◽  
Yu-Ting Lin ◽  
Chiung-Chih Chang ◽  
Shuang-Hui He

Four new species of Aleurodiscus sensu lato with echinulate basidiospores are described from East Asia: A.alpinus, A.pinicola, A.senticosus, and A.sichuanensis. Aleurodiscusalpinus is from northwest Yunnan of China where it occurs on Rhododendron in montane habitats. Aleurodiscuspinicola occurs on Pinus in montane settings in Taiwan and northwest Yunnan. Aleurodiscussenticosus is from subtropical Taiwan, where it occurs on angiosperms. Aleurodiscussichuanensis is reported from southwest China on angiosperms in montane environments. Phylogenetic relationships of these four new species were inferred from analyses of a combined dataset consisting of three genetic markers, viz. 28S, nuc rDNA ITS1-5.8S-ITS2 (ITS), and a portion of the translation elongation factor 1-alpha gene, TEF1.


2021 ◽  
Vol 7 (12) ◽  
pp. 1080
Author(s):  
Lingling Li ◽  
Qin Yang ◽  
He Li

Tea-oil tree (Camellia oleifera) is an important edible oil woody plant with a planting area of over 3,800,000 hectares in southern China. Pestalotioid fungi are associated with a wide variety of plants worldwide along with endophytes, pathogens, and saprobes. In this study, symptomatic leaves of C. oleifera were collected from Guangdong, Guangxi, Hainan, Hunan, and Jiangsu Provinces and pestalotioid fungi are characterized based on combined sequence data analyses of internal transcribed spacer (ITS), beta tubulin (tub2), and translation elongation factor 1-alpha (tef-1α) coupled with morphological characteristics. As a result, seven species were confirmed, of which five species are described as new viz. N. camelliae-oleiferae, P. camelliae-oleiferae, P. hunanensis, P. nanjingensis, P. nanningensis, while the other two are reported as known species, viz., N. cubana and N. iberica. Pathogenicity assays showed that all species except for P. nanjingensis developed brown lesions on healthy leaves and P. camelliae-oleiferae showed stronger virulence.


Plants ◽  
2020 ◽  
Vol 9 (2) ◽  
pp. 134 ◽  
Author(s):  
Mohamed T. Nouri ◽  
Daniel P. Lawrence ◽  
Craig E. Kallsen ◽  
Florent P. Trouillas

In this study, declining pistachio rootstocks were detected in newly planted commercial pistachio orchards in Kern County, California. Symptoms were characterized by wilted foliage combined with crown rot in the rootstock. From diseased trees, 42 isolates were obtained, and all had similar cultural and morphological characteristics of Macrophomina phaseolina. Analyses of nucleotide sequences of three gene fragments, the internal transcribed spacer region (ITS1–5.8S–ITS2), partial sequences of β-tubulin, and translation elongation factor 1-α (TEF1) confirmed this identification, and 20 representative isolates are presented in the phylogenetic study. Testing of Koch’s postulates showed that M. phaseolina, when inoculated to stems and roots of the pistachio rootstocks using mycelial plugs or a microsclerotial suspension, is indeed pathogenic to this host. The widely used clonal University of California Berkeley I (UCBI) rootstock appeared highly susceptible to M. phaseolina, suggesting that this pathogen is an emerging threat to the production of pistachio in California. This study confirmed the association of M. phaseolina with the decline of pistachio trees and represents the first description of this fungus as a crown rot-causing agent of pistachio in California.


Gene ◽  
1992 ◽  
Vol 120 (2) ◽  
pp. 315-316 ◽  
Author(s):  
Anneke M. Metz ◽  
Richard T. Timmer ◽  
M.Leah Allen ◽  
Karen S. Browning

Life ◽  
2018 ◽  
Vol 8 (3) ◽  
pp. 31 ◽  
Author(s):  
Alessia Marchetta ◽  
Bert Gerrits van den Ende ◽  
Abdullah Al-Hatmi ◽  
Ferry Hagen ◽  
Polona Zalar ◽  
...  

A global set of clinical and environmental strains of the halotolerant black yeast-like fungus Hortaea werneckii are analyzed by multilocus sequencing and AFLP, and physiological parameters are determined. Partial translation elongation factor 1-α proves to be suitable for typing because of the presence/absence of introns and also the presence of several SNPs. Local clonal expansion could be established by a combination of molecular methods, while the population from the Mediterranean Sea water also responds differently to combined temperature and salt stress. The species comprises molecular populations, which in part also differ physiologically allowing further diversification, but clinical strains did not deviate significantly from their environmental counterparts.


2020 ◽  
Vol 11 ◽  
Author(s):  
Indunil C. Senanayake ◽  
Jayarama D. Bhat ◽  
Ratchadawan Cheewangkoon ◽  
Ning Xie

A survey of bambusicolous fungi in Bijiashan Mountain Park, Shenzhen, Guangdong Province, China, revealed several Arthrinium-like taxa from dead sheaths, twigs, and clumps of Bambusa species. Phylogenetic relationships were investigated based on morphology and combined analyses of the internal transcribed spacer region (ITS), large subunit nuclear ribosomal DNA (LSU), beta tubulin (β-tubulin), and translation elongation factor 1-alpha (tef 1-α) gene sequences. Based on morphological characteristics and phylogenetic data, Arthrinium acutiapicum sp. nov. and Arthrinium pseudorasikravindrae sp. nov. are introduced herein with descriptions and illustrations. Additionally, two new locality records of Arthrinium bambusae and Arthrinium guizhouense are described and illustrated.


Phytotaxa ◽  
2019 ◽  
Vol 425 (5) ◽  
pp. 259-268
Author(s):  
XIAO-XIAO FENG ◽  
JIA-JIE CHEN ◽  
GUO-RONG WANG ◽  
TING-TING CAO ◽  
YONG-LI ZHENG ◽  
...  

During an exploration of plant pathogens in vegetables occuring in Zhejiang province, China, a novel fungal species, was found. Three strains ZJUP0033-4, ZJUP0038-3 and ZJUP0132 were isolated from black round lesions in the stems and leaves of Amaranthus sp. Phylogenetic analyses based on sequences from four genes including rDNA internal transcribed spacer (ITS), translation elongation factor 1-α (EF1-α), histone (HIS) and β-tubulin (TUB) indicated that D. sinensis clustered in a distinct clade closely related to D. neoarctii, D. angelicae, D. subordinaria, D. arctii, D. cuppatea, D. lusitanicae, D. novem, D. infecunda, D. ganjae and D. manihotia. Morphologically, D. sinensis is distinguished by brown, scattered, globose pycnidia and ellipsoid alpha conidia with bi- to multiguttulate.


Phytotaxa ◽  
2021 ◽  
Vol 479 (1) ◽  
pp. 23-43
Author(s):  
NARUEMON HUANALUEK ◽  
RUVISHIKA S. JAYAWARDENA ◽  
SAJEEWA S. N. MAHARACHCHIKUMBURA ◽  
DULANJALEE L. HARISHCHANDRA

Pestalotioid fungi commonly occur as pathogens, endophytes or saprobes. In this study, pestalotioid fungi associated with leaf spots and fruit rots were isolated from Alpinia malaccensis, A. galangal, Annona squamosa, Artocarpus heterophyllus, Citrus sp., Garcinia mangostana, Litsea petiolata, a pteridophyte, and Vitis vinifera in Chiang Rai, Thailand. Based on single- and multi-locus phylogenies using internal transcribed spacer, β-tubulin and partial translation elongation factor 1-α gene regions, along with morphological features, the isolates were identified as two new species, Neopestalotiopsis hydeana and Pestalotiopsis hydei. This is the first time a Pestalotiopsis sp. was reported associated with Litsea petiolata and a Neopestalotiopsis sp. recorded from Alpinia, Annona, Artocarpus, Garcinia and a pteridophyte in the world. This fungal group can be considered as an emerging pathogenic group on different hosts in different climatic conditions. 


Sign in / Sign up

Export Citation Format

Share Document