scholarly journals Tank Mixing Fungicides for Effectiveness Against Eastern Filbert Blight of Hazelnut

Plant Disease ◽  
2018 ◽  
Vol 102 (5) ◽  
pp. 919-924 ◽  
Author(s):  
J. W. Pscheidt ◽  
S. Heckert ◽  
S. A. Cluskey

Hazelnut (Corylus avellana) production in Oregon primarily occurs on cultivars susceptible to Anisogramma anomala, the causal agent of eastern filbert blight (EFB). Management of EFB involves planting resistant cultivars, removal of cankered limbs, and the application of fungicides. Tank mixes of demethylation-inhibiting (DMI; Fungicide Resistance Action Committee [FRAC] group 3) or quinone outside inhibitor (QoI; FRAC group 11) fungicides with chlorothalonil (FRAC group M5) at full or reduced rates were evaluated for effectiveness against A. anomala. The use of chlorothalonil in a mix with a DMI or QoI fungicide was an effective treatment for EFB even if each component of the mix was at half the labeled rate. Different liquid or dry formulations of chlorothalonil were equally effective in a tank mix for EFB control. The combination of propiconazole (FRAC group 3) tank mixed with trifloxystrobin (FRAC group 11) was not effective, whereas trees treated with propiconazole tank mixed with pyraclostrobin (FRAC group 11) resulted in significantly fewer EFB cankers compared with nontreated trees. When using tank mixes for EFB management, DMI fungicides should remain at full rates while mixing with a half-rate of chlorothalonil. In contrast, QoI fungicides and chlorothalonil could both be used at half-rates and still maintain acceptable EFB control. Tank mixing chlorothalonil with fungicides at risk of resistance development can help maintain consistent EFB control and should help prevent or delay the emergence of fungicide-resistant A. anomala isolates.

Plant Disease ◽  
2017 ◽  
Vol 101 (11) ◽  
pp. 1868-1873 ◽  
Author(s):  
J. W. Pscheidt ◽  
S. Heckert ◽  
S. A. Cluskey

Most of the hazelnut production in Oregon, a value of $130 million in 2014, was based on eastern filbert blight (EFB) susceptible cultivars. On these cultivars, EFB management involves, among other tactics, fungicide treatment during bud break and early shoot growth. Many active ingredients have been shown to be effective against EFB. This report summarizes the evaluation of quinone outside (QoI, FRAC group 11) and succinate dehydrogenase (SDHI, FRAC group 7) inhibitors alone and in combination with each other or with demethylation-inhibiting (DMI, FRAC group 3) fungicides for management of EFB. Based on a meta-analysis, picoxystrobin, pyraclostrobin, or trifloxystrobin alone resulted in significant control over nontreated trees ranging between 64 and 74%. Fluoxastrobin was not as effective as other QoI fungicides with an average of 44% control and high variability. SDHI fungicides as a group were less useful for management of EFB with boscalid, fluopyram, and penthiopyrad ineffective while fluxapyroxad averaged 83% control against EFB. Prepackaged mixes of QoI materials with either SDHI or DMI fungicides were also significantly effective against EFB. Use of QoI fungicides and the SDHI material fluxapyroxad offers added flexibility and complexity within EFB management programs. Growers can incorporate any of five different modes of action in EFB management programs including FRAC groups M1, M5, 3, 7, and 11.


Plant Disease ◽  
2021 ◽  
Author(s):  
Hafiz Muhammad Usman ◽  
Qin Tan ◽  
Mohammad Mazharul Karim ◽  
Muhammad Adnan ◽  
Weixiao Yin ◽  
...  

Anthracnose, mainly caused by Colletotrichum gloeosporioides species complex including C. fructicola and C. siamense, is a devastating disease of peach. The chemical control has been widely used for years and management failures have increased towards commonly used fungicides. Therefore, screening of sensitivity of Colletotrichum spp. to fungicides with different modes of action is needed to make proper management strategies for peach anthracnose. In this study, sensitivity of 80 isolates of C. fructicola and C. siamense was screened for pyraclostrobin, procymidone, prochloraz and fludioxonil based on mycelial growth inhibition at discriminatory doses. Results showed that C. fructicola and C. siamense isolates were highly resistant to procymidone and fludioxonil with 100% resistance frequencies to both fungicides, but sensitive to prochloraz, i.e., no resistant isolates were found. For pyraclostrobin, 74% of C. fructicola isolates showed high resistance and 26 % were low resistant, all of the C. siamense isolates were low resistant. No positive cross-resistance was observed between pyraclostrobin and azoxystrobin, even they are members of the same quinone outside inhibitor (QoI) fungicide group, and between pyraclostrobin and non-QoIs. Resistant isolates to QoI fungicides were evaluated for the fitness penalty. Results showed that no significant differences except for mycelial growth rates were detected between highly resistant and low-resistant isolates of C. fructicola. Molecular characterization of Cyt b gene revealed that the G143A point mutation was the determinant of the high resistance in C. fructicola. This study demonstrated the current resistance status of C. fructicola and C. siamense to different fungicides and their future perspectives. Demethylation inhibitor (DMI) fungicides are the best option among different chemicals to control peach anthracnose in China.


HortScience ◽  
1999 ◽  
Vol 34 (3) ◽  
pp. 451E-451
Author(s):  
C.F. Lunde ◽  
M.S. Mehlenbacher ◽  
D.C. Smith

A survey of hazelnut (Corylus avellana L.) genotypes for response to the eastern filbert blight pathogen [Anisogramma anomala (Peck) E. Müller] was performed. Seven varieties were discovered that did not display disease signs or symptoms when subjected to severe inoculation with A. anomala in the greenhouse and assayed for infection. These cultivars are `Closca Molla', `Ratoli', `Yoder #5', `Potomac', `Medium Long', `Grand Traverse' and `Zimmerman'. `Ratoli' and `Closca Molla', both minor varieties from Spain, are superior agronomic types to the resistant cultivar Gasaway, which has been the main resistance source used in the breeding program. Only `Zimmerman' carries the RAPD marker linked to resistance in populations segregating for the `Gasaway' gene. Three populations were created using, `Zimmerman', as the pollen parent in controlled crosses. These populations were inoculated with spores of the pathogen and assayed by indirect ELISA and by observation of canker incidence. Resistant phenotypes make up 84% of the populations, indicating that `Zimmerman' possesses resistance either distinct from or additional to that found in, `Gasaway'. A RAPD marker linked to the resistance gene in crosses with `Gasaway' cosegregates with the resistant phenotype in all three populations (0 cM, 3 cM, 4 cM). Mechanisms to explain the distortion in these populations are discussed. Further studies are required to characterize the mechanism and inheritance resistance in these other clones.


HortScience ◽  
1991 ◽  
Vol 26 (4) ◽  
pp. 410-411 ◽  
Author(s):  
Shawn A. Mehlenbacher ◽  
Maxine M. Thompson ◽  
H. Ronald Cameron

`Gasaway' hazelnut (Corylus avellana L.) is highly resistant to eastern filbert blight caused by Anisogramma anomala (Peck) E. Muller. Progeny produced from controlled crosses of `Gasaway' with five susceptible genotypes and open pollination in a `DuChilly' orchard were planted in a diseased orchard and rated for symptom expression for 9 to 10 years. All progeny were found to segregate 50% resistant: 50% susceptible, indicating that `Gasaway' is heterozygous for a single dominant resistance gene.


HortScience ◽  
2007 ◽  
Vol 42 (3) ◽  
pp. 466-469 ◽  
Author(s):  
Honglin Chen ◽  
Shawn A. Mehlenbacher ◽  
David C. Smith

A diverse collection of 58 hazelnut accessions, including Corylus avellana L. and interspecific hybrids, were evaluated for their response to the eastern filbert blight pathogen Anisogramma anomala (Peck) E. Müller after greenhouse inoculation. Evaluations were made using enzyme-linked immunosorbent assay and visual inspection. Forty-five of these became infected, 12 remained free of infection, and one gave inconclusive results. The 12 accessions showing complete resistance were European hazelnuts ‘Culpla’ from Spain and CCOR 187 from Finland; C. americana × C. avellana hybrids ‘G081S’, CCOR 506, and Weschcke selections TP1, TP2 and TP3; C. colurna × C. avellana hybrids Chinese Trazels Gellatly #6 and #11; Turkish Trazel Gellatly #3 and backcross hybrid ‘Lisa’; and C. heterophylla var. sutchuensis × C. avellana hybrid ‘Estrella #1’. In a second test, exposure of potted trees under structures topped with diseased wood confirmed the complete resistance of ‘Santiam’, four pollinizers, and ‘Ratoli’. However, a few small cankers were observed on ‘Closca Molla’ from Spain and OSU 729.012, with resistance from C. californica (A.DC.) Rose, in contrast to the results of earlier greenhouse inoculations.


2008 ◽  
Vol 98 (2) ◽  
pp. 230-238 ◽  
Author(s):  
Chao-Xi Luo ◽  
Guido Schnabel

The ability to develop fungicide resistance was assessed in Monilinia fructicola isolates with different fungicide sensitivity phenotypes by adapting mycelium and conidia to increasing concentrations of selective fungicides and UV mutagenesis. Results showed that adaptation to Quinone outside inhibitor (QoI) fungicide azoxystrobin and sterol demethylation inhibitor (DMI) fungicide propiconazole was more effective in conidial-transfer experiments compared to mycelial-transfer experiments. DMI-resistant (DMI-R) isolates adapted to significantly higher doses of azoxystrobin in both, mycelial- and conidial-transfer experiments compared to benzimidazole-resistant (BZI-R) and sensitive (S) isolates. Adaptation to propiconazole in conidial-transfer experiments was accelerated in BZI-R isolates when a stable, nonlethal dose of 50 μg/ml thiophanate-methyl was added to the selection medium. One of two azoxystrobin-resistant mutants from DMI-R isolates did not show any fitness penalties; the other isolate expired before further tests could be carried out. The viable mutant caused larger lesions on detached peach fruit sprayed with azoxystrobin compared to the parental isolate. The azoxystrobin sensitivity of the viable mutant returned to baseline levels after the mutant was transferred to unamended medium. However, azoxystrobin resistance recovered quicker in the mutant compared to the corresponding parental isolate after renewed subculturing on medium amended with 0.2 and 1 μg/ml azoxystrobin; only the mutant but not the parental isolate was able to adapt to 5 μg/ml azoxystrobin. In UV mutagenesis experiments, the DMI-R isolates produced significantly more mutants compared to S isolates. All of the UV-induced mutants showed stable fungicide resistance with little fitness penalty. This study indicates the potential for QoI fungicide resistance development in M. fructicola in the absence of a mutagen and provides evidence for increased mutability and predisposition to accelerated adaptation to azoxystrobin in M. fructicola isolates resistant to DMI fungicides.


2020 ◽  
Vol 21 (1) ◽  
pp. 69-70
Author(s):  
Md Emran Ali ◽  
Owen Hudson ◽  
Sumyya Waliullah ◽  
Jeff Cook ◽  
Phillip M. Brannen

Anthracnose fruit rot disease, caused by Colletotrichum spp., is the most significant disease problem of commercial strawberry (Fragaria × ananassa) production in the southeastern United States. The hot, humid weather and continuous rainfall in Georgia make Colletotrichum-induced fruit rot a widespread problem in strawberry production. In order to control this disease, growers mainly rely on preventive fungicide applications from flower bud emergence to harvest. The most commonly used single-site fungicides are quinone outside inhibitors (QoIs); the QoI active ingredients azoxystrobin and pyraclostrobin are utilized to manage anthracnose fruit rot. In 2019, we collected 108 strawberry fruits with visible rot symptoms from seven different strawberry farms in Georgia. These farms had received multiple applications of QoI fungicides during the 2019 growing season, as well as in previous seasons. Sensitivities to pyraclostrobin were assessed on 1% malt extract agar using a mycelial growth inhibition assay. Our results demonstrated that a majority of Colletotrichum isolates collected in 2019 were not inhibited by pyraclostrobin, suggesting a growing resistance issue with the QoI fungicides. A PCR-restriction fragment length polymorphism assay showed the presence of the G143A mutation in all QoI “resistant” C. acutatum isolates and none for isolates labeled “reduced sensitivity” or “sensitive”. These results further prove that C. acutatum isolates with the G143A mutation are highly resistant to the QoI fungicide. These findings suggest that there is a high risk of resistance development associated with using pyraclostrobin (likely all QoIs) for controlling anthracnose fruit rot of strawberry in Georgia.


HortScience ◽  
2000 ◽  
Vol 35 (4) ◽  
pp. 729-731 ◽  
Author(s):  
China F. Lunde ◽  
Shawn A. Mehlenbacher ◽  
David C. Smith

Ninety hazelnut (Corylus sp.) genotypes were surveyed for response to the eastern filbert blight pathogen [Anisogramma anomala (Peck) E. Müller] following greenhouse inoculation using a combination of enzyme-linked immunosorbent assay (ELISA) and visual inspection for cankers. Most were cultivars of the European hazelnut (Corylus avellana L.) and a few were interspecific hybrids. Six genotypes did not display signs of the pathogen or symptoms of disease: `Closca Molla', `Ratoli', `Yoder #5', `Potomac', `Medium Long', and `Grand Traverse'. `Closca Molla' and `Ratoli', both minor Spanish cultivars, are superior in many respects to `Gasaway', which has been extensively used as a completely resistant parent in breeding. `Potomac' and `Yoder #5' have C. americana Marsh. in their pedigrees, `Grand Traverse' is one-quarter C. colurna, and the origin of `Medium Long' is uncertain. The random amplified polymorphic DNA (RAPD) marker generated by primer UBC 152, which is linked to the single dominant resistance gene of `Gasaway', is absent in these six genotypes, and thus they appear to be novel sources of genetic resistance to this devastating disease.


Plant Disease ◽  
1997 ◽  
Vol 81 (4) ◽  
pp. 388-394 ◽  
Author(s):  
N. K. Osterbauer ◽  
K. B. Johnson ◽  
S. A. Mehlenbacher ◽  
T. L. Sawyer

Inheritance of resistance to eastern filbert blight, caused by Anisogramma anomala, in European hazelnut (Corylus avellana) was evaluated in the progeny of seven cultivars crossed in 12 combinations. The progeny were subjected to inoculation with A. anomala in the greenhouse and in the field. Three disease responses were measured: disease incidence, number of cankers, and proportion of wood diseased. In both the greenhouse and the field, progeny produced by crossing VR6-28 with three susceptible cultivars segregated 1:1 for complete resistance to eastern filbert blight, confirming a previous report that VR6-28 is heterozygous for a single, dominant resistance gene. Histograms of disease responses in progeny of the remaining six parents showed continuous distributions for all crosses examined. Consequently, these parents were analyzed for general and specific combining abilities for each disease response. In the field, general and specific combining ability were both significant (P < 0.05) for all disease responses, with general combining ability having twice the magnitude of specific combining ability. These results suggest these disease responses are controlled by additive gene action in the cultivars examined, with nonadditive gene action being of some importance. Based on general combining ability values, high levels of partial resistance were transmitted by the pollen parents, Gem and Tonda di Giffoni, and the seed parent, Willamette. Heritability of disease incidence, number of cankers, and proportion of wood diseased were calculated to be 0.21, 0.39, and 0.47, respectively, for this set of nine crosses after the first exposure period in the field. This suggests that it will be possible to use partially resistant parents to breed for hazelnuts exhibiting fewer and smaller cankers.


Plant Disease ◽  
2020 ◽  
Author(s):  
Jhonatan Barro ◽  
Flávio Martins Santana ◽  
Franklin Jackson Machado ◽  
Maíra Rodrigues Duffeck ◽  
Douglas Lau ◽  
...  

Fusarium head blight (FHB), caused mainly by Fusarium graminearum, is best controlled with demethylation inhibitor (DMI) fungicides during flowering. However, the use of premixes of DMI and quinone outside inhibitor (QoI) fungicides to control FHB has increased in Brazil. Data on FHB severity and wheat yields measured in field experiments conducted in Brazil were gathered from both peer- and non-peer-reviewed sources published from 2000 to 2018. After applying selection criteria, 73 field trials from 35 bibliographic sources were identified, among which 50% of the data were obtained from cooperative network trials conducted after 2011. To be included in the analysis, a DMI+QoI premixes or tebuconazole (TEB) were tested in at least 14 trials and three years. Four premixes met the criteria. Estimates of percent control (and respective 95% confidence interval) by a network model fitted to the log of the treatment means ranged from 44.1% (pyraclostrobin + metconazole applied once; 32.4 to 53.7) to 64.3% (pyraclostrobin + metconazole; 58.4 to 69.3); the latter not differing from TEB (59.9%, 53.6 to 65.3). Yield response was statistically similar for pyraclostrobin + metconazole (532.1 kg/ha, 441 to 623) and trifloxystrobin + prothioconazole (494.9 kg/ha, 385 to 551), and both differed statistically from a group composed of TEB (448.2 kg/ha, 342 to 554), trifloxystrobin + TEB (468.2 kg/ha, 385 to 551), azoxystrobin + TEB (462.4 kg/ha, 366 to 558) and pyraclostrobin + metconazole applied once (413.7 kg/ha, 308 to 518). The two categories of FHB index (7% cut off) and yield (3,000 kg/ha cut off), both in the non-treated check, did not explain the heterogeneity in the estimates. Two sequential sprays of TEB or one spray of pyraclostrobin + metconazole as management choices are likely more profitable than DIM+QoI premixes sprayed twice during flowering considering only the fungicide effects on yield.


Sign in / Sign up

Export Citation Format

Share Document