resistant cultivar
Recently Published Documents


TOTAL DOCUMENTS

146
(FIVE YEARS 34)

H-INDEX

23
(FIVE YEARS 2)

2022 ◽  
Vol 12 ◽  
Author(s):  
Wan Muhamad Asrul Nizam Wan Abdullah ◽  
Noor Baity Saidi ◽  
Mohd Termizi Yusof ◽  
Chien-Yeong Wee ◽  
Hwei-San Loh ◽  
...  

Fusarium oxysporum f. sp. cubense tropical race 4 (FocTR4) is a destructive necrotrophic fungal pathogen afflicting global banana production. Infection process involves the activation of programmed cell death (PCD). In this study, seven Musa acuminata vacuolar processing enzyme (MaVPE1–MaVPE7) genes associated with PCD were successfully identified. Phylogenetic analysis and tissue-specific expression categorized these MaVPEs into the seed and vegetative types. FocTR4 infection induced the majority of MaVPE expressions in the susceptible cultivar “Berangan” as compared to the resistant cultivar “Jari Buaya.” Consistently, upon FocTR4 infection, high caspase-1 activity was detected in the susceptible cultivar, while low level of caspase-1 activity was recorded in the resistant cultivar. Furthermore, inhibition of MaVPE activities via caspase-1 inhibitor in the susceptible cultivar reduced tonoplast rupture, decreased lesion formation, and enhanced stress tolerance against FocTR4 infection. Additionally, the Arabidopsis VPE-null mutant exhibited higher tolerance to FocTR4 infection, indicated by reduced sporulation rate, low levels of H2O2 content, and high levels of cell viability. Comparative proteomic profiling analysis revealed increase in the abundance of cysteine proteinase in the inoculated susceptible cultivar, as opposed to cysteine proteinase inhibitors in the resistant cultivar. In conclusion, the increase in vacuolar processing enzyme (VPE)-mediated PCD played a crucial role in modulating susceptibility response during compatible interaction, which facilitated FocTR4 colonization in the host.


2021 ◽  
Vol 12 ◽  
Author(s):  
Xiaojie Wang ◽  
Yawei Li ◽  
Yuanyuan Liu ◽  
Dongle Zhang ◽  
Min Ni ◽  
...  

Kiwifruit bacterial canker caused by Pseudomonas syringae pv. actinidiae (Psa), is an important disease of kiwifruit (Actinidia Lind.). Plant hormones may induce various secondary metabolites to resist pathogens via modulation of hormone-responsive transcription factors (TFs), as reported in past studies. In this study, we showed that JA accumulated in the susceptible cultivar Actinidia chinensis ‘Hongyang’ but decreased in the resistant cultivar of A. chinensis var. deliciosa ‘Jinkui’ in response to Psa. Integrated transcriptomic and proteomic analyses were carried out using the resistant cultivar ‘Jinkui’. A total of 5,045 differentially expressed genes (DEGs) and 1,681 differentially expressed proteins (DEPs) were identified after Psa infection. Two pathways, ‘plant hormone signal transduction’ and ‘phenylpropanoid biosynthesis,’ were activated at the protein and transcript levels. In addition, a total of 27 R2R3-MYB transcription factors (TFs) were involved in the response to Psa of ‘Jinkui,’ including the R2R3-MYB TF subgroup 4 gene AcMYB16, which was downregulated in ‘Jinkui’ but upregulated in ‘Hongyang.’ The promoter region of AcMYB16 has a MeJA responsiveness cis-acting regulatory element (CRE). Transient expression of the AcMYB16 gene in the leaves of ‘Jinkui’ induced Psa infection. Together, these data suggest that AcMYB16 acts as a repressor to regulate the response of kiwifruit to Psa infection. Our work will help to unravel the processes of kiwifruit resistance to pathogens and will facilitate the development of varieties with resistance against bacterial pathogens.


Author(s):  
He Rui ◽  
Chang Yin Dong ◽  
Wang Jian Ming

A plant’s early response to pathogen stress is a vital indicator of its disease resistance. In order to study the response mechanism of resistant and susceptible flax cultivars to Fusarium oxysporum f. sp. lini (Foln), we applied RNA-sequencing to analyze transcriptomes of flax with Foln 0.5, 2 and 8 hours post inoculation (hpi). We found a significant difference in the number of differential expression genes (DEGs) between resistant and susceptible flax clutivars. The number of DEGs in the Fusarium-resistant cultivar increased dramatically at 2 hpi, and a large number of DEGs participated in the Fusarium-susceptible cultivar response to Foln infection 0.5 hpi. GO enrichment analysis determined that the up-regulated DEGs of both flax cultivars were enriched such as oxidoreductase activity and oxidation-reduction process. At the same time, the genes involved in diterpenoid synthesis were up-regulated in resistant cultivar, while those involved in extracellular region, cell wall and organophosphate ester transport were down-regulated in susceptible cultivar. KEGG enrichment analysis showed the genes encoded WRKY 22 and WRKY33 which involved in MAPK signaling pathway were up-regulated expressed in S-29 and down-regulated expressed in R-7, negatively regulated the disease resistance of flax; The genes encoded Hsp 90 family which in involved in plant pathogen interaction pathway were up-regulated in R-7 and down-regulated in S-29, which positively regulated the disease resistance of flax; The genes encoded MYC2 transcription factor and TIFY proteins which involved in plant hormone signaling pathway were up-regulated in R-7, and regulated the jasmonic acid metabolism of flax and the signal transduction of plant hormones. Meanwhile seven regulatory genes with the most correlation were screened out, Among Lus10025000.g and Lus10026447.g regulated other genes expressed both in plant hormone signal transduction pathway and MAPK signal pathway. In conclusion, these findings will facilitate further studies on the function of these candidate genes in flax of response to Fusarium stress, and the breeding of disease-resistant flax cultivar.


Plants ◽  
2021 ◽  
Vol 10 (9) ◽  
pp. 1883
Author(s):  
Urban Kunej ◽  
Jernej Jakše ◽  
Sebastjan Radišek ◽  
Nataša Štajner

MicroRNAs are 21- to 24-nucleotide-long, non-coding RNA molecules that regulate gene expression at the post-transcriptional level. They can modulate various biological processes, including plant response and resistance to fungal pathogens. Hops are grown for use in the brewing industry and, recently, also for the pharmaceutical industry. Severe Verticillium wilt caused by the phytopathogenic fungus Verticillium nonalfalfae, is the main factor in yield loss in many crops, including hops (Humulus lupulus L.). In our study, we identified 56 known and 43 novel miRNAs and their expression patterns in the roots of susceptible and resistant hop cultivars after inoculation with V. nonalfalfae. In response to inoculation with V. nonalfalfae, we found five known and two novel miRNAs that are differentially expressed in the susceptible cultivar and six known miRNAs in the resistant cultivar. Differentially expressed miRNAs target 49 transcripts involved in protein localization and pigment synthesis in the susceptible cultivar, whereas they are involved in transcription factor regulation and hormone signalling in the resistant cultivar. The results of our study suggest that the susceptible and resistant hop cultivars respond differently to V. nonalfalfae inoculation at the miRNA level and that miRNAs may contribute to the successful defence of the resistant cultivar.


Biology ◽  
2021 ◽  
Vol 10 (9) ◽  
pp. 840
Author(s):  
Sadegh Balotf ◽  
Richard Wilson ◽  
Robert S. Tegg ◽  
David S. Nichols ◽  
Calum R. Wilson

Spongospora subterranea is an obligate biotrophic pathogen, causing substantial economic loss to potato industries globally. Currently, there are no fully effective management strategies for the control of potato diseases caused by S. subterranea. To further our understanding of S. subterranea biology during infection, we characterized the transcriptome and proteome of the pathogen during the invasion of roots of a susceptible and a resistant potato cultivar. A total of 7650 transcripts from S. subterranea were identified in the transcriptome analysis in which 1377 transcripts were differentially expressed between two cultivars. In proteome analysis, we identified 117 proteins with 42 proteins significantly changed in comparisons between resistant and susceptible cultivars. The functional annotation of transcriptome data indicated that the gene ontology terms related to the transportation and actin processes were induced in the resistant cultivar. The downregulation of enzyme activity and nucleic acid metabolism in the resistant cultivar suggests a probable influence of these processes in the virulence of S. subterranea. The protein analysis results indicated that the majority of differentially expressed proteins were related to the metabolic processes and transporter activity. The present study provides a comprehensive molecular insight into the multiple layers of gene regulation that contribute to S. subterranea infection and development in planta and illuminates the role of host immunity in affecting pathogen responses.


Author(s):  
Jesse Jones ◽  
Elaine Zhang ◽  
Dominick Tucker ◽  
Daniel Rietz ◽  
Douglas Dahlbeck ◽  
...  

AbstractA highly efficient transformation protocol is a prerequisite to developing genetically modified and genome-edited crops. A tissue culture system spanning culture initiation from floral material to conversion of embryos to plants has been tested and improved in Theobroma cacao. Nine cultivars were screened for their tissue culture response and susceptibility to Agrobacterium transfer-DNA delivery as measured through transient expression. These key factors were used to determine the genetic transformability of various cultivars. The high-yielding, disease-resistant cultivar INIAPG-038 was selected for stable transformation and the method was further optimized. Multiple transgenic events were produced using two vectors containing both yellow fluorescent protein and neomycin phosphotransferase II genes. A two-fold strategy to improve both T-DNA delivery and secondary somatic embryogenesis rates was conducted to improve overall transformation frequency. The use of Agrobacterium strain AGL1 and cotyledon tissue derived from secondary somatic embryos ranging in size between 4 to 10 mm resulted in the highest T-DNA delivery efficiency. Furthermore, the use of higher concentrations of basal salts and cupric sulfate in the medium increased the frequency of explants producing greater than ten embryos by five-fold and four-fold during secondary somatic embryogenesis, respectively. Consequently, an optimal combination of all these components resulted in a successful transformation of INIAPG-038 with 3.7% frequency at the T0 plant-level. Grafting transgenic scions with undeveloped roots to non-transgenic seedlings with healthy roots helped make plantlets survive and facilitated quick transplantation to the soil. The presented strategy can be applied to improve tissue culture response and transformation frequency in other Theobroma cacao cultivars.


2021 ◽  
Author(s):  
Urban Kunej ◽  
Jernej Jakše ◽  
Sebastjan Radišek ◽  
Nataša Štajner

Abstract Micro RNAs are 21- to 24-nucleotide-long, non-coding RNA molecules that regulate gene expression at the post-transcriptional level. They can modulate various biological processes, including plant response and resistance to fungal pathogens. Hops are grown for use in the brewing industry and recently also for pharmaceutical industry. Severe Verticillium wilt caused by the phytopathogenic fungus Verticillium nonalfalfae, is the main factor in yield loss in many crops, including hops (Humulus lupulus L.). In our study, we identified 56 known and 43 novel miRNAs and their expression patterns in the roots of susceptible and resistant hop cultivars after inoculation with V. nonalfalfae. In response to inoculation with V. nonalfalfae, we found five known and two novel miRNAs that are differentially expressed in the susceptible cultivar and six known miRNAs in the resistant cultivar. Differentially expressed miRNAs target 49 transcripts involved in protein localization and pigment synthesis in the susceptible cultivar, whereas they are involved in transcription factor regulation and hormone signalling in the resistant cultivar. The results of our study suggest that the susceptible and resistant hop cultivars respond differently to V. nonalfalfae inoculation at the miRNA level and that miRNAs may contribute to the successful defence of the resistant cultivar.


Viruses ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 1303
Author(s):  
Michael A. Catto ◽  
Anita Shrestha ◽  
Mark R. Abney ◽  
Donald E. Champagne ◽  
Albert K. Culbreath ◽  
...  

Planting resistant cultivars is the most effective tactic to manage the thrips-transmitted tomato spotted wilt orthotospovirus (TSWV) in peanut plants. However, molecular mechanisms conferring resistance to TSWV in resistant cultivars are unknown. In this study, transcriptomes of TSWV-susceptible (SunOleic 97R) and field-resistant (Tifguard) peanut cultivars with and without TSWV infection were assembled and differentially expressed genes (DEGs) were compared. There were 4605 and 2579 significant DEGs in SunOleic 97R and Tifguard, respectively. Despite the lower number of DEGs in Tifguard, an increased proportion of defense-related genes were upregulated in Tifguard than in the susceptible cultivar. Examples included disease resistance (R) proteins, leucine-rich repeats, stilbene synthase, dicer, and calmodulin. Pathway analysis revealed the increased downregulation of genes associated with defense and photosynthesis in the susceptible cultivar rather than in the resistant cultivar. These results suggest that essential physiological functions were less perturbed in the resistant cultivar than in the susceptible cultivar and that the defense response following TSWV infection was more robust in the resistant cultivar than in the susceptible cultivar.


2021 ◽  
Vol 22 (8) ◽  
pp. 4224
Author(s):  
Urban Kunej ◽  
Jernej Jakše ◽  
Sebastjan Radišek ◽  
Nataša Štajner

RNA interference is an evolutionary conserved mechanism by which organisms regulate the expression of genes in a sequence-specific manner to modulate defense responses against various abiotic or biotic stresses. Hops are grown for their use in brewing and, in recent years, for the pharmaceutical industry. Hop production is threatened by many phytopathogens, of which Verticillium, the causal agent of Verticillium wilt, is a major contributor to yield losses. In the present study, we performed identification, characterization, phylogenetic, and expression analyses of three Argonaute, two Dicer-like, and two RNA-dependent RNA polymerase genes in the susceptible hop cultivar Celeia and the resistant cultivar Wye Target after infection with Verticillium nonalfalfae. Phylogeny results showed clustering of hop RNAi proteins with their orthologues from the closely related species Cannabis sativa, Morus notabilis and Ziziphus jujuba which form a common cluster with species of the Rosaceae family. Expression analysis revealed downregulation of argonaute 2 in both cultivars on the third day post-inoculation, which may result in reduced AGO2-siRNA-mediated posttranscriptional gene silencing. Both cultivars may also repress ta-siRNA biogenesis at different dpi, as we observed downregulation of argonaute 7 in the susceptible cultivar on day 1 and downregulation of RDR6 in the resistant cultivar on day 3 after inoculation.


Sign in / Sign up

Export Citation Format

Share Document