scholarly journals First Report of Coffee Canker Disease Caused by Ceratocystis fimbriata in China

Plant Disease ◽  
2022 ◽  
Author(s):  
Kecheng Xu ◽  
Ruiqi Zhang ◽  
Haixia Lu ◽  
Jinglong Zhang ◽  
Jing Yang ◽  
...  

Coffee (Coffea arabica L.) is one of the most important agricultural commodities in the world market. As an important cash crop in China, coffee is cultivated mainly in Yunnan and Hainan provinces. During October 2013 and September 2020, coffee trees showing typical dieback and wilt symptoms were found in Nanping town (N 22° 38', E 101° 0'), Pu’er, and Puwen town (N 22° 32', E 101° 4'), Xishuangbanna in Yunnan province, China. Symptomatic trees initially exhibited yellowing of foliage, expanding in size along the leaf margin, then became blighted and dry, and the internal xylem in main stem discolored brown to black. Infected trees eventually developed dieback and wilt. Disease incidence ranged from 10% to 22% and 25% to 40% of crown symptoms in the affected coffee trees. In extreme cases, 50% out of 380 trees were affected. The stems of coffee trees with typical symptoms were collected, and then the diseased tissues were surface disinfected with 75% ethanol for 30 s and 0.1% mercuric chloride (HgCl2) solution for 2 min, rinsed three times with sterile distilled water, plated onto potato dextrose agar (PDA) medium, and incubated at 25°C. After 6 days, fungal mycelium was observed growing from the tissue. Three isolates (C3-1, C3-2, and C3-2-1) were obtained by picking spore masses from the apices of perithecia and transferring them to malt extract agar (MEA) medium and incubated at 25°C for 10 days to observe the cultural features. In culture, colonies reaching 65 mm within 10 days, mycelium initially white, then becoming light blue-green. After 6 days of formation, perithecia were black, globose (123.8 - 173.4 μm × 138.2 - 180.6 μm), and showed a long black neck (414.2 - 650.0 μm). Ascospores with outer cell wall forming a brim, hat-shaped, accumulating in a mucilaginous mass at the tips of ostiolar hyphae (4.3 μm × 6.0 μm). Cylindrical endoconidia (14.1 - 45.2 μm × 3.5 - 5.7 μm) were hyaline. Chain of barrel-shaped conidia (6.6 - 10.2 μm × 6.8 - 8.8 μm) were found. Aleuroconidia (10.8 - 16.9 μm × 9.1 - 13.0 μm) were olive-brown, ovoid or obpyriform, and smooth. Morphological characteristics of the fungus were consistent with the description of Ceratocystis fimbriata Ellis & Halst. (Engelbrecht and Harrington 2005). The three isolates were used for molecular identification, and their genomic DNA was extracted using the chelex-100 method (Xu et al. 2020). The internal transcribed spacer (ITS) region of rDNA was sequenced using the procedures of Thorpe et al. (2005). Analysis of the ITS sequence data (GenBank accessions KY580836, KJ511480, and KJ511479) showed that the isolates were 100% homologous to isolates of C. fimbriata from Punica granatum, Camellia sinensis, and Cucumis sativus in China (GenBank accessions KY580891, KY580870, and MH535909, respectively) by BLAST analysis. Neighbor-joining (NJ) phylogenetic analysis was performed using MEGA 6.06 based on the ITS sequences. The three isolates were clustered on the same clade with other C. fimbriata isolates with a high bootstrap value (90%). Therefore, the fungus was identified as C. fimbriata based on both morphological and molecular characteristics. Pathogenicity of the three isolates was tested by inoculating one-year-old pot grown coffee seedlings (C. arabica) through drenching the loams with 30 ml spore suspension (1 × 106 spores/ml). Control plants were inoculated with 30 ml of sterile distilled water. The trees were kept in a controlled greenhouse at 25°C and watered weekly. One month after inoculation, all inoculated plants produced typical dieback and wilt symptoms, whereas the control trees showed no symptoms. The same fungus was isolated from the inoculated trees on PDA and identified as C. fimbriata according to the methods described above, and no fungal growth was observed in the controls, thus fulfilling the Koch's postulates. Coffee canker disease caused by C. fimbriata has been reported in Indonesia and Colombia (Marin et al. 2003). To our knowledge, this is the first report of C. fimbriata causing canker disease of coffee trees in China.

Plant Disease ◽  
2020 ◽  
Author(s):  
Xue Li ◽  
Jie Li ◽  
Hua Yong Bai ◽  
Kecheng Xu ◽  
Ruiqi Zhang ◽  
...  

Rubber tree (Hevea brasiliensis (Willd. ex Adr. Juss) Müll. Arg.) is used for the extraction of natural rubber and is an economically and socially important estate crop commodity in many Asian countries such as Indonesia, Malaysia, Thailand, India, Sri Lanka, China and several countries in Africa (Pu et al, 2007). Xishuangbanna City and Wenshan City are the main rubber cultivation areas in Yunnan Province, China. In November 2012, rubber tree showing typical wilt symptoms (Fig. 1 A) and vascular stains (Fig. 1 B) were found in Mengla County, Xishuangbanna City. This disease was destructive in these trees and plant wilt death rate reached 5%. The diseased wood pieces (0.5cm long) from trunk of rubber was surface disinfected with 75% ethanol for 30s and 0.1% mercuric chloride (HgCl2) for 2min, rinsed three times with sterile distilled water, plated onto malt extract agar medium (MEA), and incubated at 28℃. After 7 days, fungal-like filaments were growing from the diseased trunk. Six cultures from 6 rubber trunk were obtained and incubated on MEA at 28℃, after 7 days to observe the cultural features. The mycelium of each culture was white initially on MEA, and then became dark green. Cylindrical endoconidia apices rounded, non-septate, smooth, single or borne in chains (8.9 to 23.6 × 3.81 to 6.3μm) (Fig. 1 C). Chlamydospores (Fig. 1 D) were abundant, thick walled, smooth, forming singly or in chains (11.1 to 19.2 × 9.4 to 12.0μm). The mould fungus was identifed as Chalaropsis based on morphology (Paulin-Mahady et al. 2002). PCR amplification was carried out for 3 isolates, using rDNA internal transcribed spacer (ITS) primer pairs ITS1F and ITS4 (Thorpe et al. 2005). The nucleotide sequences were deposited in the GenBank data base and used in a Blast search of GenBank. Blast analysis of sequenced isolates XJm8-2-6, XJm8-2 and XJm10-2-6 (accessions KJ511486, KJ511487, KJ511489 respectively) had 99% identity to Ch. thielavioides strains hy (KF356186) and C1630 (AF275491). Thus the pathogen was identified as Ch. thielavioides based on morphological characteristics and rDNA-ITS sequence analysis. Pathogenicity test of the isolate (XJm8-2) was conducted on five 1-year-old rubber seedlings. The soil of 5 rubber seedlings was inoculated by drenching with 40 ml spore suspension (106 spores / ml). Five control seedlings were inoculated with 40 ml of sterile distilled water. All the seedlings were maintained in a controlled greenhouse at 25°C and watered weekly. After inoculated 6 weeks, all the seedlings with spore suspension produced wilt symptoms, as disease progressed, inoculated leaves withered (Fig. 1 E) and vascular stains (Fig. 1 F) by 4 months. While control seedlings inoculated with sterile distilled water remained healthy. The pathogen re-isolated from all inoculated symptomatic trunk was identical to the isolates by morphology and ITS analysis. But no pathogen was isolated from the control seedlings. The pathogenicity assay showed that Ch. thielavioides was pathogenic to rubber trees. Blight caused on rubber tree by Ceratocystis fimbriata previously in Brazil (Valdetaro et al. 2015), and wilt by Ch. thielavioides was not reported. The asexual states of most species in Ceratocystis are “chalara” or “thielaviopsis” (de Beer et al. 2014). To our knowledge, this is the first report of this fungus causing wilt of rubber in China. The spread of this disease may pose a threat to rubber production in China.


Plant Disease ◽  
2021 ◽  
Author(s):  
Siti Izera Ismail ◽  
Nur Liyana Mohmad Zaiwawi ◽  
Sumaiyah Abdullah ◽  
Syari Jamian ◽  
Norsazilawati Saad

Plumeria alba L. is a flowering plant in the family Apocynaceae and widely cultivated in Malaysia as a cosmopolitan ornamental plant. In January 2020, anthracnose lesions were observed on leaves of Plumeria alba planted in Agricultural Farm, Universiti Putra Malaysia, in Selangor state, Malaysia. The disease mainly affected the leaves with symptoms occurring with approximately a 60% disease incidence. Ten symptomatic leaves were sampled from 3 different trees in the farm. Symptoms initiated as small circular necrotic spots that rapidly enlarged into black lesions with pale brown borders. Diseased tissues (5×5 mm) were surface-sterilized with 70% ethanol for 1 min, rinsed three times with sterile distilled water, dried on sterile filter papers, plated on PDA and, incubated at 25 °C with a 12-h photoperiod. A total of seven single-spore isolates with similar colony morphologies were obtained from tissue samples. After 7 days, the colonies raised the entire margin and showed white-to-gray aerial mycelium, orange conidial masses in the center and appeared dark brown at the center of the reverse view. The conidia were 1-celled, hyaline, smooth-walled, cylindrical with narrowing at the center, averaged (13-15 μm × 3 - 4 μm) (n=40) in size. Morphological characteristics of the isolates were similar to those detailed in taxonomic description of Colletotrichum sp. (Prihastuti et al. 2009). For molecular identification, genomic DNA of two representative isolates, PL3 and PL4 was extracted from fresh mycelium using DNeasy Plant Mini Kit (Qiagen, USA). The internal transcribed spacer (ITS) region, actin (ACT) and calmodulin (CAL) genes were amplified using ITS5/ITS4 (White et al. 1990), ACT-512F/783R (Carbone and Kohn 1999) and CL1C/CL2C primer sets (Weir et al. 2012). A BLAST nucleotide search of GenBank using ITS sequences showed 100% identity to Colletotrichum siamense ex-type culture ICMP 18578 (GenBank accession no. JX010171). ACT and CAL sequences showed 100% identity with C. siamense ex-type isolate BPD-I2 (GenBank accession no. FJ907423 and FJ917505). The sequences were deposited in GenBank (ITS: accession nos. MW335128, MT912574), ACT: accession nos. MW341257, MW341256, CAL: accession nos. MW341255 and MT919260). Based on these morphological and molecular characteristics, the fungus was identified as C. siamense. Pathogenicity of PL3 and PL4 isolates was verified using four healthy detached leaves of Plumeria alba. The leaves were surface-sterilized using 70% ethanol and rinsed twice with sterile water before inoculation. The leaves (three inoculation sites/leaf) were wounded by puncturing with a sterile needle through the leaf cuticle and inoculated in the wound site with 10-μl of conidial suspension (1×106 conidia/ml) from 7-days-old culture on PDA. Four leaves were used as a control and were inoculated only with 10-μl of sterile distilled water. Inoculated leaves were kept in humid chambers for 2 weeks at 25 °C with 98% relative humidity on a 12-h fluorescent light/dark period. The experiment was repeated three times. Anthracnose symptoms were observed on all inoculated leaves after 3 days, whereas controls showed no symptoms. Fungal isolates from the diseased leaves showed the same morphological characteristics as isolates PL3 and PL4, confirming Koch’s postulates. C. siamense has been reported causing anthracnose on rose (Rosa chinensis) in China (Feng et al. 2019), Coffea arabica in Thailand (Prihastuti et al. 2009) and mango leaf anthracnose in Vietnam (Li et al. 2020). To our knowledge, this is the first report of Colletrotrichum siamense causing leaf anthracnose on Plumeria alba in Malaysia. Accurate identification of this pathogen provides a foundation in controlling anthracnose disease on Plumeria alba.


Plant Disease ◽  
2022 ◽  
Author(s):  
Kecheng Xu ◽  
Ruiqi Zhang ◽  
Jie Li ◽  
Xue Li ◽  
Jing Yang ◽  
...  

The rubber tree (Hevea brasiliensis) is an important economic resource for the rubber and latex industry. During November 2013 and June 2016, rubber trees showing typical wilt symptoms were found in Mengla, Xishuangbannan, Yunnan, China (N 21° 28', E 101° 33'). Symptomatic trees initially exhibited wilting of foliage on individual branches, then spread to the whole canopy, finally followed by death of the whole tree. Dark-blue to black discoloration was observed in the inner bark and affected xylem, a grayish layer of fungal growth and sporulation occasionally. The disease was detected on 20% of trees surveyed. The diseased tissues of three rubber trees were surface disinfected with 75% ethanol for 30 s and 0.1% mercuric chloride (HgCl2) for 2 min, rinsed three times with sterile distilled water, plated onto potato dextrose agar (PDA), and incubated at 25°C. After 7 days, a fungus was consistently observed growing from the tissue. Three single-spore isolates were obtained. In culture, colonies reaching 69 mm diam within 10 days, mycelium was initially white, then becoming celadon. After 5 days of perithecium formation, observed perithecia were black, globose (173.1 - 237.9 × 175.6 - 217.2 μm) and showed a long black neck (507.3 - 794.1 μm). Ascospore with outer cell wall forming a brim, hat-shaped at the tips of ostiolar hyphae (3.43 × 5.63 μm). Cylindrical endoconidia (10.5 - 39.7 × 3.5 - 6.6 μm) were hyaline. Chain of barrel-shaped conidia (7.2 - 9.5 × 4.1 - 6.2 μm) was found. Aleuroconidia were ovoid or obpyriform, and smooth (10.2 - 14.1 × 8.4 - 10.6 μm). Morphological characteristics of the fungus were consistent with the description of Ceratocystis fimbriata (Engelbrecht and Harrington 2005). The genomic DNA was extracted from isolates (XJm10-2-5, XJm8-2-5, XJm4) using the Chelex-100 method (Xu et al. 2020). The ITS region of rDNA was sequenced using the procedures of Thorpe et al. (2005). Analysis of ITS sequence data (GenBank accessions KJ511488, KJ511485, KT963149) showed that the isolates were 100% homologous to those of the isolates on Punica granatum and Colocasia esculenta from China (GenBank accessions KT963152, MH793673) by BLAST analysis. Neighbor-joining phylogenetic analyse were performed using MEGA 6.06 based on ITS sequences (Fig. 1). Analyses showed that all isolates located on the same clade with all C. fimbriata with a high bootstrap support. Therefore, the fungus was identified as C. fimbriata based on morphology and molecular evidences. Pathogenicity of C. fimbriata isolated from this study was tested by inoculation of three one-year-old pot-grown (3L) seedlings of rubber tree. The soil of three seedlings was inoculated by drenching with 30 ml spore suspension (2.0 × 106 spores / ml). Three control plants were inoculated with 30 ml of sterile distilled water. The experiment was repeated three times. The plants were kept in a controlled greenhouse at 25°C and watered weekly. After the inoculation for one month, all the isolates produced typical wilt symptoms, while control plants showed no symptoms. The original fungus was successfully re-isolated from inoculated trees and identified as C. fimbriata according to the methods described above. The pathogenicity assay showed that C. fimbriata was pathogenic to rubber trees. C. fimbriata was first reported on rubber tree in Brazil (Albuquerque et al. 1972; Silveira et al. 1985). To the best of our knowledge, this is the first report of C. fimbriata causing wilt of rubber tree in China. This finding contributes to understanding the diversity of this pathogen, and it appears to be a significant threat to rubber trees in its ecosystem.


Plant Disease ◽  
2011 ◽  
Vol 95 (5) ◽  
pp. 616-616 ◽  
Author(s):  
J. Kim ◽  
O. Choi ◽  
J.-H. Kwon

Sweet persimmon (Diospyros kaki L.), a fruit tree in the Ebenaceae, is cultivated widely in Korea and Japan, the leading producers worldwide (2). Sweet persimmon fruit with flyspeck symptoms were collected from orchards in the Jinju area of Korea in November 2010. The fruit had fungal clusters of black, round to ovoid, sclerotium-like fungal bodies with no visible evidence of a mycelial mat. Orchard inspections revealed that disease incidence ranged from 10 to 20% in the surveyed area (approximately 10 ha) in 2010. Flyspeck symptoms were observed on immature and mature fruit. Sweet persimmon fruit peels with flyspeck symptoms were removed, dried, and individual speck lesions transferred to potato dextrose agar (PDA) and cultured at 22°C in the dark. Fungal isolates were obtained from flyspeck colonies on 10 sweet persimmon fruit harvested from each of three orchards. Fungal isolates that grew from the lesions were identified based on a previous description (1). To confirm identity of the causal fungus, the complete internal transcribed spacer (ITS) rDNA sequence of a representative isolate was amplified and sequenced using primers ITS1 and ITS4 (4). The resulting 552-bp sequence was deposited in GenBank (Accession No. HQ698923). Comparison with ITS rDNA sequences showed 100% similarity with a sequence of Zygophiala wisconsinensis Batzer & Crous (GenBank Accession No. AY598855), which infects apple. To fulfill Koch's postulates, mature, intact sweet persimmon fruit were surface sterilized with 70% ethanol and dried. Three fungal isolates from this study were grown on PDA for 1 month. A colonized agar disc (5 mm in diameter) of each isolate was cut from the advancing margin of a colony with a sterilized cork borer, transferred to a 1.5-ml Eppendorf tube, and ground into a suspension of mycelial fragments and conidia in a blender with 1 ml of sterile, distilled water. The inoculum of each isolate was applied by swabbing a sweet persimmon fruit with the suspension. Three sweet persimmon fruit were inoculated per isolate. Three fruit were inoculated similarly with sterile, distilled water as the control treatment. After 1 month of incubation in a moist chamber at 22°C, the same fungal fruiting symptoms were reproduced as observed in the orchards, and the fungus was reisolated from these symptoms, but not from the control fruit, which were asymptomatic. On the basis of morphological characteristics of the fungal colonies, ITS sequence, and pathogenicity to persimmon fruit, the fungus was identified as Z. wisconsinensis (1). Flyspeck is readily isolated from sweet persimmon fruit in Korea and other sweet persimmon growing regions (3). The exposure of fruit to unusual weather conditions in Korea in recent years, including drought, and low-temperature and low-light situations in late spring, which are favorable for flyspeck, might be associated with an increase in occurrence of flyspeck on sweet persimmon fruit in Korea. To our knowledge, this is the first report of Z. wisconsinensis causing flyspeck on sweet persimmon in Korea. References: (1) J. C. Batzer et al. Mycologia 100:246, 2008. (2) FAOSTAT Database. Retrieved from http://faostat.fao.org/ , 2008. (3) H. Nasu and H. Kunoh. Plant Dis. 71:361, 1987. (4) T. J. White et al. Page 315 in: PCR Protocols: A Guide to Methods and Applications. M. A. Innis et al., eds. Academic Press, Inc., New York, 1990.


Plant Disease ◽  
2021 ◽  
Author(s):  
Yanxiang Qi ◽  
Yanping Fu ◽  
Jun Peng ◽  
Fanyun Zeng ◽  
Yanwei Wang ◽  
...  

Banana (Musa acuminate L.) is an important tropical fruit in China. During 2019-2020, a new leaf spot disease was observed on banana (M. acuminate L. AAA Cavendish, cv. Formosana) at two orchards of Chengmai county (19°48ʹ41.79″ N, 109°58ʹ44.95″ E), Hainan province, China. In total, the disease incidence was about 5% of banana trees (6 000 trees). The leaf spots occurred sporadically and were mostly confined to the leaf margin, and the percentage of the leaf area covered by lesions was less than 1%. Symptoms on the leaves were initially reddish brown spots that gradually expanded to ovoid-shaped lesions and eventually become necrotic, dry, and gray with a yellow halo. The conidia obtained from leaf lesions were brown, erect or curved, fusiform or elliptical, 3 to 4 septa with dimensions of 13.75 to 31.39 µm × 5.91 to 13.35 µm (avg. 22.39 × 8.83 µm). The cells of both ends were small and hyaline while the middle cells were larger and darker (Zhang et al. 2010). Morphological characteristics of the conidia matched the description of Curvularia geniculata (Tracy & Earle) Boedijn. To acquire the pathogen, tissue pieces (15 mm2) of symptomatic leaves were surface disinfected in 70% ethanol (10 s) and 0.8% NaClO (2 min), rinsed in sterile water three times, and transferred to potato dextrose agar (PDA) for three days at 28°C. Grayish green fungal colonies appeared, and then turned fluffy with grey and white aerial mycelium with age. Two representative isolates (CATAS-CG01 and CATAS-CG92) of single-spore cultures were selected for molecular identification. Genomic DNA was extracted from the two isolates, the internal transcribed spacer (ITS), large subunit ribosomal DNA (LSU rDNA), glyceraldehyde-3-phosphate dehydrogenase (GAPDH), translation elongation factor 1-alpha (TEF1-α) and RNA polymerase II second largest subunit (RPB2) were amplified and sequenced with universal primers ITS1/ITS4, LROR/LR5, GPD1/GPD2, EF1-983F/EF1-2218R and 5F2/7cR, respectively (Huang et al. 2017; Raza et al. 2019). The sequences were deposited in GenBank (MW186196, MW186197, OK091651, OK721009 and OK491081 for CATAS-CG01; MZ734453, MZ734465, OK091652, OK721100 and OK642748 for CATAS-CG92, respectively). For phylogenetic analysis, MEGA7.0 (Kumar et al. 2016) was used to construct a Maximum Likelihood (ML) tree with 1 000 bootstrap replicates, based on a concatenation alignment of five gene sequences of the two isolates in this study as well as sequences of other Curvularia species obtained from GenBank. The cluster analysis revealed that isolates CATAS-CG01 and CATAS-CG92 were C. geniculata. Pathogenicity assays were conducted on 7-leaf-old banana seedlings. Two leaves from potted plants were stab inoculated by puncturing into 1-mm using a sterilized needle and placing 10 μl conidial suspension (2×106 conidia/ml) on the surface of wounded leaves and equal number of leaves were inoculated with sterile distilled water serving as control (three replicates). Inoculated plants were grown in the greenhouse (12 h/12 h light/dark, 28°C, 90% relative humidity). Necrotic lesions on inoculated leaves appeared seven days after inoculation, whereas control leaves remained healthy. The fungus was recovered from inoculated leaves, and its taxonomy was confirmed morphologically and molecularly, fulfilling Koch’s postulates. C. geniculata has been reported to cause leaf spot on banana in Jamaica (Meredith, 1963). To our knowledge, this is the first report of C. geniculata on banana in China.


Plant Disease ◽  
2011 ◽  
Vol 95 (7) ◽  
pp. 874-874 ◽  
Author(s):  
Y. M. Shen ◽  
C. H. Chao ◽  
H. L. Liu

Gynura bicolor (Roxb. ex Willd.) DC., known as Okinawa spinach or hong-feng-cai, is a commonly consumed vegetable in Asian countries. In May 2010, plants with blight and wilt symptoms were observed in commercial vegetable farms in Changhua, Taiwan. Light brown-to-black blight lesions developed from the top of the stems to the petioles and extended to the base of the leaves. Severely infected plants declined and eventually died. Disease incidence was approximately 20%. Samples of symptomatic tissues were surface sterilized in 0.6% NaOCl and plated on water agar. A Phytophthora sp. was consistently isolated and further plated on 10% unclarified V8 juice agar, with daily radial growths of 7.6, 8.6, 5.7, and 2.4 mm at 25, 30, 35, and 37°C, respectively. Four replicates were measured for each temperature. No hyphal growth was observed at 39°C. Intercalary hyphal swellings and proliferating sporangia were produced in culture plates flooded with sterile distilled water. Sporangia were nonpapillate, obpyriform to ellipsoid, base tapered or rounded, and 43.3 (27.5 to 59.3) × 27.6 (18.5 to 36.3) μm. Clamydospores and oospores were not observed. Oospores were present in dual cultures with an isolate of P. nicotianae (p731) (1) A2 mating type, indicating that the isolate was heterothallic. A portion of the internal transcribed spacer sequence was deposited in GenBank (Accession No. HQ717146). The sequence was 99% identical to that of P. drechsleri SCRP232 (ATCC46724) (3), a type isolate of the species. The pathogen was identified as P. drechsleri Tucker based on temperature growth, morphological characteristics, and ITS sequence homology (3). To evaluate pathogenicity, the isolated P. drechsleri was inoculated on greenhouse-potted G. bicolor plants. Inoculum was obtained by grinding two dishes of the pathogen cultured on potato dextrose agar (PDA) with sterile distilled water in a blender. After filtering through a gauze layer, the filtrate was aliquoted to 240 ml. The inoculum (approximately 180 sporangia/ml) was sprayed on 24 plants of G. bicolor. An equal number of plants treated with sterile PDA processed in the same way served as controls. After 1 week, incubation at an average temperature of 29°C, blight and wilt symptoms similar to those observed in the fields appeared on 12 inoculated plants. The pathogen was reisolated from the lesions of diseased stems and leaves, fulfilling Koch's postulates. The controls remained symptomless. The pathogenicity test was repeated once with similar results. G. bicolor in Taiwan has been recorded to be infected by P. cryptogea (1,2), a species that resembles P. drechsleri. The recorded isolates of P. cryptogea did not have a maximal growth temperature at or above 35°C (1,2), a distinctive characteristic to discriminate between the two species (3). To our knowledge, this is the first report of P. drechsleri being associated with stem and foliar blight of G. bicolor. References: (1) P. J. Ann. Plant Pathol. Bull. 5:146, 1996. (2) H. H. Ho et al. The Genus Phytophthora in Taiwan. Institute of Botany, Academia Sinica, Taipei, 1995. (3) R. Mostowfizadeh-Ghalamfarsa et al. Fungal Biol. 114:325, 2010.


Plant Disease ◽  
2013 ◽  
Vol 97 (7) ◽  
pp. 992-992 ◽  
Author(s):  
Y. L. Li ◽  
Z. Zhou ◽  
W. Lu ◽  
J. R. Ye

Sansevieria trifasciata originates from tropical West Africa. It is widely planted as a potted ornamental in China for improving indoor air quality (1). In February 2011, leaves of S. trifasciata plants in an ornamental market of Anle, Luoyang City, China, were observed with sunken brown lesions up to 20 mm in diameter, and with black pycnidia present in the lesions. One hundred potted plants were examined, with disease incidence at 20%. The symptomatic leaves affected the ornamental value of the plants. A section of leaf tissue from the periphery of two lesions from a plant was cut into 1 cm2 pieces, soaked in 70% ethanol for 30 s, sterilized with 0.1% HgCl2 for 2 min, then washed five times in sterilized distilled water. The pieces were incubated at 28°C on potato dextrose agar (PDA). Colonies of two isolates were brown with submerged hyphae, and aerial mycelium was rare. Abundant and scattered pycnidia were reniform, dark brown, and 200 to 350 × 100 to 250 μm. There were two types of setae on the pycnidia: 1) dark brown setae with inward curved tops, and 2) straight, brown setae. Conidia were hyaline, unicellular, cylindrical, and 3.75 to 6.25 × 1.25 to 2.50 μm. Morphological characteristics suggested the two fungal isolates were a Chaetomella sp. To confirm pathogenicity, six mature leaves of a potted S. trifasciata plant were wounded with a sterile pin after wiping each leaf surface with 70% ethanol and washing each leaf with sterilized distilled water three times. A 0.5 cm mycelial disk cut from the margin of a 5-day-old colony on a PDA plate was placed on each pin-wounded leaf, ensuring that the mycelium was in contact with the wound. Non-colonized PDA discs were placed on pin-wounded leaves as the control treatment. Each of two fungal isolates was inoculated on two leaves, and the control treatment was done similarly on two leaves. The inoculated plant was placed in a growth chamber at 28°C with 80% relative humidity. After 7 days, inoculated leaves produced brown lesions with black pycnidia, but no symptoms developed on the control leaves. A Chaetomella sp. was reisolated from the lesions of inoculated leaves, but not from the control leaves. An additional two potted plants were inoculated using the same methods as replications of the experiment, with identical results. To confirm the fungal identification, the internal transcribed spacer (ITS) region of rDNA of the two isolates was amplified using primers ITS1 and ITS4 (2) and sequenced. The sequences were identical (GenBank Accession No. KC515097) and exhibited 99% nucleotide identity to the ITS sequence of an isolate of Chaetomella sp. in GenBank (AJ301961). To our knowledge, this is the first report of a leaf spot of S. trifasciata caused by Chaetomella sp. in China as well as anywhere in the world. References: (1) X. Z. Guo et al. Subtropical Crops Commun. Zhejiang 27:9, 2005. (2) T. J. White et al. PCR Protocols: A Guide to Methods and Applications. M. A. Innis et al., eds. Academic Press, San Diego, CA, 1990.


Plant Disease ◽  
2020 ◽  
Author(s):  
Wen Li ◽  
Yue-qiu He ◽  
Tao Fu ◽  
Li Lin ◽  
Feng Liu ◽  
...  

Zinnia elegans (syn. Zinnia violacea), known as common zinnia, is one of the most spectacular ornamental plants in the family Asteraceae. Zinnia plants are widely cultivated in China for their impressive range in flower colours and profuse bloom over a long period. In April 2019, Zinnia plants grown in Ningbo Botanical Garden (29°56′57″N, 121°36′20″E) were found to have many circular necrotic lesions. In the early infection stage, the lesions appeared as small circular specks which developed later into large spots (15 to 32 mm diameter). Typical symptoms appeared to be grayish white centers with a chlorotic edges and disease incidence reached approximately 80% of plants in the affected field. Moreover, the growth of Zinnia plants was seriously affected by the disease. To identify the causative pathogen associated with the disease, 10 symptomatic leaves were collected from ten different Zinnia plants. Leaf tissues were cut from the lesion margins, surface sterilized with 75% ethanol for 30 seconds and rinsed three times in sterile distilled water. The leaf tissues were then dipped into 10% sodium hypochlorite for 2-3 minutes, washed three times in distilled water and dried on a sterile filter paper. After drying, the surface-sterilized leaf discs were transferred to potato dextrose agar (PDA) plates and incubated at 28°C for 2 to 3 days under the 12 h photoperiod. A total of ten pure fungal isolates were obtained and all the isolates displayed the same colony structure. Afterwards, three pure strains were randomly selected (F1, F3 and F5) for further study. The fungal colonies showed gray to brownish aerial mycelia with pink-colored masses of conidia. Conidia were one-celled, hyaline, cylindrical to subcylindrical, spindle-shaped with obtuse ends, measuring from 15.6 to 17.3 × 4.6 to 5.1 μm with both ends rounded. These morphological characteristics were consistent with the description of Colletotrichum gloeosporioides complex (Weir et al. 2012). The identity of a representative isolate, F3, was confirmed by a multilocus approach. Genomic DAN of isolate F3 was extracted and partial sequences of actin (ACT), chitin synthase (CHS), glyceraldehyde-3-phosphate dehydrogenase (GAPDH), ribosomal internal transcribed spacer (ITS), manganese-superoxide dismutase (SOD2) , glutamine synthatase (GS), beta-tubulin (TUB2) and calmodulin (CAL) were amplified and sequenced as previously described (Weir et al. 2012). These nucleotide sequences were deposited in GenBank (accession MN972436 to MN972440, and MT266559 to MT266561; all sequences in FASTA format are shown (Supplementary S1). BLAST analysis of ITS, ACT, CHS, GAPDH and GS sequences from the F3 isolate revealed similarity to C. gloeosporioides voucher strain ZH01 with 100%, 100%,99%, 99% and 99% identity, respectively. SOD, TUB2 and CAL sequences showed similarity to C. siamense with 100%, 100% and 100% identity, respectively. The phylogenetic trees were constructed by Maximum Likelihood method (ML) using JTT model implemented in the MEGA 7. Results inferred from the concatenated sequences (ACT, CHS, GAPDH, ITS, SOD, GS, TUB2 and CAL) placed the isolate F3 within the C. siamense cluster (Supplementary S2). To confirm pathogenicity of the fungus, Koch’s postulates were conducted by spraying 20 Zinnia plants (60-day-old) with a 1 × 106 conidia/ml suspension. Plants were maintained in the growth chamber at 25°C and 85% relative humidity. After 10 to 15 days, symptoms were observed on all inoculated leaves and resembled those observed in the field, whereas the control plants remained asymptomatic. Here, C. siamense was isolated only from the infected Zinnia leaves and identified by morphological and gene sequencing analyses. C. siamense has been reported in many crops in China (Yang et al. 2019; Chen et al. 2019; Wang et al. 2019). However, to our knowledge, this is the first report of anthracnose caused by C. siamense on Zinnia elegans in China. References Chen, X., Wang, T., Guo, H., Zhu, P. K., and Xu, L. 2019. First report of anthracnose of Camellia sasanqua caused by Colletotrichum siamense in China. Plant Dis. 103:1423-1423. Wang, Y., Qin, H. Y., Liu, Y. X., Fan, S. T., Sun, D., Yang, Y. M., Li, C. Y., and Ai, J. 2019. First report of anthracnose caused by Colletotrichum siamense on Actinidia arguta in China. Plant Dis. 103:372-373. Weir, B. S., Johnston, P. R., and Damm, U. 2012. The Colletotrichum gloeosporioides species complex. Stud. Mycol. 73: 115-180. Yang, S., Wang, H. X., Yi, Y. J., and Tan, L. L. 2019. First report that Colletotrichum siamense causes leaf spots on Camellia japonica in China. Plant Dis. 103:2127-2127.


Plant Disease ◽  
2021 ◽  
Author(s):  
Donghun Kang ◽  
Jungyeon Kim ◽  
Youn Mi Lee ◽  
Balaraju Kotnala ◽  
Yongho Jeon

In September 2020, typical anthracnose symptoms were observed on cotton (Gossypium indicum Lam.) leaves growing in Hahoe village, Andong, Gyeongbuk Province, Korea. The leaves of the infected plants initially showed spots with halo-lesions which became enlarged and spread to the entire leaf surface area. The infected leaves later became yellowish and chlorotic (Fig. 1A). The disease incidence was at least 90% in the field. For pathogen isolation, fresh samples collected from symptomatic leaves were cut into small pieces (4 to 5 mm2), surface-sterilized in 1% sodium hypochlorite for 1 min, rinsed three times, and macerated in sterile distilled water (SDW). They were spread onto potato dextrose agar (PDA) plates and incubated at 25 °C for 5 days under a 12-h photoperiod. Five isolates were recovered from the infected leaves. Purified fungal colonies were initially white, later turned yellow on PDA medium. Conidia were yellow-colored, smooth-walled, aseptate, straight or slightly distorted, and cylindrical with one end slightly acute or with broadly rounded ends, and with size ranges from 15.3 to 17.5 µm (length) × 4.5 to 5.2 µm (width) (Fig. 1B). The morphological characteristics of the present isolates were consistent with those of Colletotrichum gloeosporioides (Weir et al. 2012). A single isolate, ANUK97, was selected for identification. The multilocus sequence analysis (MLSA) of the actin (ACT), calmodulin (CAL), glyceraldehyde-3-phosphate dehydrogenase (GAPDH), internal transcribed spacer (ITS) rDNA, and β-tubulin (Tub2) were amplified by PCR with the primer pairs of ACT-521F/ACT-783R, CL1C/CL2C, GDF/GDR, ITS1/ITS4, and T1/T2, respectively (White et al. 1990). The resulting sequences were deposited in GenBank under accession numbers MW580367 (ACT), MW580368 (CAL), MW580369 (GAPDH), MW580370 (ITS), and MW580371 (TUB2). A nucleotide BLAST search revealed that ACT, CAL, GAPDH, ITS, and TUB2 sequences be 99% similar to accession numbers MN307380.1, MH155176.1, MK796226.1, MW580370.1, and JX010377.1, respectively of C. theobromicola. Maximum likelihood (ML) phylogenetic analysis was conducted based on a combined dataset of ACT, CAL, GAPDH, ITS, and TUB2 sequences using MEGA-X 10.1.8. The isolate ANUK97 was clustered with a representative strain C. theobromicola CBS124945 100% bootstrap support (Fig. 2). For the pathogenicity test, two-month-old cotton seedlings (n = 10) were inoculated with conidial suspensions (10⁶ spore/mL) of C. theobromicola obtained from 7-day-old PDA cultures at 25 °C by spray method. Seedlings treated with sterile distilled water served as controls. Inoculated and control cotton plants were incubated in the greenhouse at 25 °C under a 12-h photoperiod. After 7 days, necrotic lesions were observed on the artificially inoculated cotton plants, while control plants did not develop any disease symptoms. The pathogen was re-isolated from infected cotton leaves, but not from control plants to fulfill Koch’s postulates. To our knowledge, this is the first report of anthracnose of cotton caused by Colletotrichum theobromicola in Korea.


Plant Disease ◽  
2021 ◽  
Author(s):  
Yun-fei Mao ◽  
Li Jin ◽  
Huiyue Chen ◽  
Xiang-rong Zheng ◽  
Minjia Wang ◽  
...  

American sweetgum (Liquidambar styraciflua L.) is an important tree for landscaping and wood processing. In recent years, leaf spots on American sweetgum with disease incidence of about 53% were observed in about 1200 full grown plants in a field (about 8 ha) located in Pizhou, Jiangsu Province, China. Initially, dense reddish-brown spots appeared on both old and new leaves. Later, the spots expanded into dark brown lesions with yellow halos. Symptomatic leaf samples from different trees were collected and processed in the laboratory. For pathogen isolation, leaf sections (4×4mm) removed from the lesion margin were surface sterilized with 75% ethanol for 20s and then sterilized in 2% NaOCl for 30s, rinsed three times in sterile distilled water, incubated on potato dextrose agar (PDA) at 25 °C in the darkness. After 5 days of cultivation, the pure culture was obtained by single spore separation. 6 isolate samples from different leaves named FXA1 to FXA6 shared nearly identical morphological features. The isolate FXA1 (codes CFCC 54675) was deposited in the China Center for Type Culture Collection. On the PDA, the colonies were light yellow with dense mycelium, rough margin, and reverse brownish yellow. Conidiophores (23–35 × 6–10 µm) (n=60) were solitary, straight to flexuous. Conidia (19–34 × 10–21 µm) (n=60) were single, muriform, oblong, mid to deep brown, with 1 to 6 transverse septa. These morphological characteristics resemble Stemphylium eturmiunum (Simmons 2001). Genomic DNA was extracted from mycelium following the CTAB method. The ITS region, gapdh, and cmdA genes were amplified and sequenced with the primers ITS5/ITS4 (Woudenberg et al. 2017), gpd1/gpd2 (Berbee et al. 1999), and CALDF1/CALDR2 (Lawrence et al. 2013), respectively. A maximum likelihood phylogenetic analysis based on ITS, gapdh and cmdA (accession nos. MT898502-MT898507, MT902342-MT902347, MT902336-MT902341) sequences using MEGA 7.0 revealed that the isolates were placed in the same clade as S. eturmiunum with 98% bootstrap support. All seedlings for pathogenicity tests were enclosed in plastic transparent incubators to maintain high relative humidity (90%-100%) and incubated in a greenhouse at 25°C with a 12-h photoperiod. For pathogenicity, the conidial suspension (105 spores/ml) of each isolate was sprayed respectively onto healthy leaves of L. styraciflua potted seedlings (2-year-old, 3 replicate plants per isolate). As a control, 3 seedlings were sprayed with sterile distilled water. After 7 days, dense reddish-brown spots were observed on all inoculated leaves. In another set of tests, healthy plants (3 leaves per plant, 3 replicate plants per isolate) were wound-inoculated with mycelial plugs (4×4mm) and inoculated with sterile PDA plugs as a control. After 7 days, brown lesions with light yellow halo were observed on all inoculation sites with the mycelial plugs. Controls remained asymptomatic in the entire experiment. The pathogen was reisolated from symptomatic tissues and identified as S. eturmiunum but was not recovered from the control. The experiment was repeated twice with the similar results, fulfilling Koch’s postulates. S. eturmiunum had been reported on tomato (Andersen et al. 2004), wheat (Poursafar et al. 2016), garlic (L. Fu et al. 2019) but not on woody plant leaves. To our knowledge, this is the first report of S. eturmiunum causing leaf spot on L. styraciflua in the world. This disease poses a potential threat to American sweetgum and wheat in Pizhou.


Sign in / Sign up

Export Citation Format

Share Document