Acquisition and Transmission of Fusarium oxysporum f. sp. vasinfectum VCG 0114 (Race 4) by Stink Bugs

Plant Disease ◽  
2021 ◽  
Author(s):  
Jesus F. Esquivel ◽  
Alois A. Bell

Fusarium oxysporum f. sp. vasinfectum VCG 0114 (race 4; i.e., FOV4) is an emerging pathogen that causes severe root rot and wilt of cotton. FOV4 is seed-borne, but the mode of seed invasion is uncertain. In an initial study, seeds in bolls that were puncture inoculated with FOV4 conidia when they were 25- or 30-days old became infected but remained viable. Because stink bugs can ingest and introduce bacterial and yeast pathogens into cotton bolls, we hypothesized that stink bugs may ingest and transmit FOV4. Southern green stink bugs and brown stink bugs were exposed to potato dextrose agar cultures of FOV4 and subsequently caged with cotton bolls to assess transmission potential. Both species fed on the cultures and acquired FOV4, and brown stink bugs transmitted FOV4 to cotton bolls. Thus, management of FOV4 may require management of stink bugs to mitigate the spread of the disease in cotton.

2013 ◽  
Vol 38 (2) ◽  
pp. 173-176 ◽  
Author(s):  
Yong-hong HUANG ◽  
Shun LÜ ◽  
Chun-yu LI ◽  
Yue-rong WEI ◽  
Gan-jun YI

Plant Disease ◽  
2020 ◽  
Vol 104 (4) ◽  
pp. 1254
Author(s):  
B. H. Lu ◽  
Z. Wang ◽  
G. J. Yi ◽  
G. W. Tan ◽  
F. Zeng ◽  
...  

1978 ◽  
Vol 56 (21) ◽  
pp. 2773-2780 ◽  
Author(s):  
R. N. Ames ◽  
R. G. Linderman

Easter lily bulbs were inoculated in the greenhouse with pot-culture inoculum containing a mixture of four vesicular–arbuscular (VA) mycorrhizal fungi as well as other fungi and bacteria, including pathogens. These organisms had multiplied in association with roots of lily, onion, and clover in pot cultures inoculated with sievings from lily field soils. Growth, as measured by bulb weight gain, root volume, and total leaf area, was determined on lily bulb plants inoculated at two inoculum levels and grown under three fertilizer regimes. Growth of plants inoculated with pot-culture inoculum was less than that of controls, especially in plants given the high inoculum (which included pot-culture plant roots) and the high rate of fertilization. The growth reduction apparently was due to the combined effect of greater incidence of Fusarium oxysporum root rot infections, damage to roots from fertilizer, and lower incidence of VA mycorrhizal infections. More mycorrhizal infections occurred in the low-fertilizer treatment than in the high- or no-fertilizer treatments at both high and low inoculum levels, but more F. oxysporum root rot occurred in the high-inoculum, high-fertilizer treatment.In a second experiment, lily seedlings that lacked bulb nutrient reserves were grown at a low fertilizer level and inoculated with Acaulospora trappei without any pathogens. Mycorrhizal plants were significantly larger than nonmycorrhizal control plants, and their tissues contained more N, P, K, Ca, and Mg than control plant tissues.


Plant Disease ◽  
2018 ◽  
Vol 102 (12) ◽  
pp. 2650-2650
Author(s):  
S. Ma ◽  
Z. Cao ◽  
Q. Qu ◽  
N. Liu ◽  
M. Xu ◽  
...  

Plant Disease ◽  
2018 ◽  
Vol 102 (2) ◽  
pp. 448-448 ◽  
Author(s):  
T. N. Hung ◽  
N. Q. Hung ◽  
D. Mostert ◽  
A. Viljoen ◽  
C. P Chao ◽  
...  

2010 ◽  
Vol 35 (3) ◽  
pp. 457-461 ◽  
Author(s):  
Jesus F. Esquivel ◽  
Enrique G. Medrano ◽  
Alois A. Bell
Keyword(s):  

Plant Disease ◽  
1999 ◽  
Vol 83 (7) ◽  
pp. 694-694 ◽  
Author(s):  
S. N. Smith ◽  
D. M. Helms ◽  
S. R. Temple ◽  
C. Frate

Fusarium wilt of blackeyed cowpeas has been known in California since the 1930s, and breeding for resistance to this disease pathogen has been a continuous effort. During the 1960s and 1970s, California Blackeye 5 (CB 5) cowpea (Vigna unguiculata L. Walp.), a widely grown cultivar of the time, became increasingly diseased by Fusarium oxysporum f. sp. tracheiphilum (Fot) Race 3 (2) throughout the growing regions of California. University of California cultivars CB 46 and CB 88 (1) were developed for resistance to Fot Races 1, 2, and 3. CB 46 is currently the principal blackeye cultivar grown on the majority of the acreage in the San Joaquin Valley. In 1989, a new race we designate “Fot Race 4” was isolated from wilted plants at a single field site in Stanislaus County. In years prior to identification, Fot Race 4 had caused severe wilt of CB 46 and CB 88 in this field. Even though the new Fot Race 4 remained confined to a small area for a number of years, sources of host plant resistance to Fot Race 4 were identified, hybridized, and screened, resulting in new progeny with desirable commercial agronomic characteristics. As observed in Stanislaus County, F. oxysporum f. sp. tracheiphilum Race 4 has the potential to cause serious crop damage, depending on virulence and soil inoculum levels, which may vary from year to year. In 1997 and 1998, an entirely different area in the southern San Joaquin Valley, about 140 miles from the original site in Stanislaus County, was found to have plants infected with Fot Race 4. Diseased plants were collected from patches in three separate CB 46 or CB 88 field sites in Tulare County. About 30 cultures were isolated from the diseased plants, which showed stunting, yellowing, and vascular discoloration. In greenhouse fusarium dip tests CB 46, CB 88, CB 5, and several Fot Race 4 resistant breeding lines were inoculated with all the collected isolates and evaluated. CB 46, CB 88, and CB 5 proved to be susceptible to these isolates, showing typical Fot Race 4 symptoms. The Fot Race 4 pathogen was then reisolated from greenhouse-grown, diseased stem tissue of CB 46, CB 88, and CB 5. These findings emphasize the importance of vigilance and necessity of continual disease surveys. They serve as an early alert for the University of California breeding program, and validate local cooperation with University of California Extension Farm Advisors. As a result of this effort new cultivar candidates with resistance to Fot Race 4 are in the final phases of multi-year commercial testing. References: (1) D. M. Helms et al. Crop Sci. 31:1703, 1991. (2) K. S. Rigert and K. W. Foster. Crop Sci. 27:220, 1987.


Plant Disease ◽  
2018 ◽  
Vol 102 (12) ◽  
pp. 2655 ◽  
Author(s):  
M. Maymon ◽  
U. Shpatz ◽  
Y. M. Harel ◽  
E. Levy ◽  
G. Elkind ◽  
...  

2019 ◽  
Vol 37 (2) ◽  
pp. 232
Author(s):  
Agustin Indrawati ◽  
Damiana Rita Ekastuti ◽  
Erdina Pangestika ◽  
Reinilda Alwina

Attacus atlas is one of several mould species in Indonesia known as kupu-kupu gajah. Information about variety of mould is rarely known. The purpose of this research was to obtain data about variety of pathogenic or non pathogenic mould at imago,cocoon, and sixth larvae phase of wild silkworm A. atlas. Mould was isolated from cocoon, integument, alimentary duct and reproduction duct of imago, trachea, midgut and hindgut, also haemolymph of larvae. Isolated mould was cultured on potato dextrose agar. Isolated mould from cocoon and imago was identified by macroscopic and microscopic observation. The results showed that there were two kind of moulds from cocoon which were Fusarium oxysporum  and Aspergillus flavus. There were four kind of moulds from imago A. atlas which were Aspergillus flavus, Aspergillus versicolor, Aspergillus fumigatus, Fusarium dimerum, and Aspergillus sp.There were three kind of moulds from sixth larvae which were Aspergillus fumigatus, Aspergillus flavus, and Fusarium dimerum. The mould which has opportunistic pathogenic for Attacus atlas were Fusarium oxysporum, Aspergillus  flavus, Aspergillus fumigatus and Fusarium dimerum.


Sign in / Sign up

Export Citation Format

Share Document