scholarly journals First Report of Phytophthora alni subsp. uniformis on Black Alder in Spain

Plant Disease ◽  
2012 ◽  
Vol 96 (4) ◽  
pp. 589-589 ◽  
Author(s):  
C. Pintos Varela ◽  
C. Rial Martínez ◽  
O. Aguín Casal ◽  
J. P. Mansilla Vázquez ◽  
A. Ares Yebra

Phytophthora alni is the causal organism responsible for devastating losses occurring on riparian alders stands in Europe. This emergent hybrid pathogen has multiple variants that have been placed in three subspecies (1). P. alni subsp. uniformis and P. alni subsp. multiformis are reported to be less aggressive than P. alni subsp. alni, though all are considered pathogenic. In Spain, P. alni subsp. alni was detected for the first time in 2009 in Galicia (northwestern Spain) causing root and collar rot on riparian alder populations (3,4), but other subspecies had not been identified. In April 2011, a survey along the Deza River in Galicia was carried out to clarify the Phytophthora sp. associated with the alder decline. Thirty riparian Alnus glutinosa stands, from both sides of the river, were surveyed. Samples of bark and roots of 18 alder stands that showed symptoms of Phytophthora rot and soil from all 30 stands were collected. Roots and tissue from fresh, active, inner bark lesions from 54 trees were transferred to selective medium V8-PARPH agar and incubated for 7 days at 22°C in the dark. P. alni subsp. alni (1) was isolated from roots, bark, or soil in five alder stands. Another Phytophthora sp. was isolated from the bark of one symptomatic tree located in Silleda (Pontevedra), transferred to carrot agar (CA), and incubated in the dark. On CA, the isolate produced irregular and appressed colonies with an optimum growth temperature of 22 to 23°C. The isolate was homothallic with smooth-walled oogonia with a diameter ranging from 36 to 50 μm and two-celled, amphigynous antheridia (1). In soil extract, noncaducous, nonpapillate, ellipsoid-to-ovoid sporangia were produced. Average sporangium were 43.4 × 30.1 μm with a length/breadth ratio of 1.43. Internal proliferation occurred. Amplification of DNA was accomplished by sequence characterized amplified region (SCAR)-PCR primers (2). The amplicon sizes obtained were identical to P. alni subsp. uniformis. Internal transcribed spacer (ITS) (DC6-ITS6/ITS4) and nadh1 (NADHF1/NADHR1) mitochondrial gene regions were also amplified and deposited in GenBank (Nos. JN880411 and JN880410). Comparison of the sequences showed 100% homology with P. alni subsp. uniformis (GenBank Nos. GU259293 and DQ202489). Pathogenicity was tested on 10 3-year-old black alder plants grown in pots. A shallow wound was made with a scalpel at the root collar level of each plant. A 5-mm-diameter mycelia plug, taken from the margin of a 7-day-old culture grown on CA, was inserted in every wound and sealed with Parafilm. Five black alder control plants received only sterile CA agar plugs. Plants were kept at 24°C and 80% humidity. After 3 months, wilting of shoots, dead leaves, and dark stained necroses of the bark tissue varying in length from 0.8 to 5 cm were observed on inoculated plants. Control plants remained healthy. P. alni subsp. uniformis was recovered from inoculated plants, but not from controls. To our knowledge, this is the first time that P. alni subsp. uniformis has been reported in Spain. The presence of a new subspecies in a new region can result in hybridization between individuals of different species or subspecies. This process may allow the rapid evolution and adaptation of these species to new hosts or environmental conditions. References: (1) C. M. Brasier et al. Mycol. Res. 108:1172, 2004. (2) R. Ioos et al. Eur. J. Plant Pathol. 112:323, 2005. (3) C. Pintos et al. Plant Dis. 94:273, 2010. (4) A. Solla et al. Plant Pathol.59:78, 2010.

Plant Disease ◽  
2010 ◽  
Vol 94 (2) ◽  
pp. 273-273 ◽  
Author(s):  
C. Pintos Varela ◽  
C. Rial Martínez ◽  
J. P. Mansilla Vázquez ◽  
O. Aguín Casal

Phytophthora alni, a soil- and waterborne pathogen, causes aggressive root and collar rot on riparian alder populations (1,2,4). The disease has been described from several European countries with a destructive impact in Great Britain (1,2). All European alder species and the red alder (Alnus rubra) are highly susceptible. P. alni has multiple variants that have been placed in three subspecies: P. alni subsp. alni, P. alni subsp. uniformis, and P. alni subsp. multiformis (1). In July 2009, a survey of symptoms of Phytophthora rot from A. glutinosa at 20 riparian stands along the Avia River in Galicia (northwest Spain) was conducted. Affected trees showed symptoms of Phytophthora rot including abnormally small, sparse, and yellowish foliage, dieback in the canopy, necroses of the inner bark and cambium, and bleeding cankers on the trunks (2,4). Phytophthora spp. were baited from saturated rhizosphere soil and watercourses using oak leaflets (4). Roots and tissue from fresh active inner bark lesions were transferred to selective medium V8-PARPH agar (4) and incubated for 7 days at 22°C in the dark. A Phytophthora sp. was isolated, transferred to carrot agar (CA), and incubated in the dark. Colonies were appressed, often irregular in outline, and with limited aerial mycelium (1). Growth on CA occurred from 4 to 31°C with optimum growth at 23 to 25°C. Chlamydospores were not observed. Ellipsoid, nonpapillate, noncaducous sporangia had a length/breadth average ratio of 1.4. Nesting and extended internal proliferation occurred. Oogonia, antheridia, and oospores were abundantly produced in a single culture. Oogonia with tapered stalks were spherical (mature oogonia 38 to 50 μm in diameter) and some had ornamented walls or bullate protuberances (1,2). Antheridia were large, amphigynous, and predominantly two-celled (23 to 37 × 16 to 23 μm). Oospores were plerotic. Distorted comma-shaped or smaller oogonia and aborted oospores were observed (1). Amplification of DNA was accomplished by using sequence-characterized amplification region-PCR primers (3). The amplicon sizes obtained were identical to P. alni subsp. alni (3). Internal transcribed spacer (ITS)-DNA and nadh1 mitochondrial gene were also amplified. DNA sequences of ITS and mt-DNA regions were deposited in GenBank (Nos. GU108602 and GU108603). Comparison of the sequences showed 100% homology with P. alni subsp. alni (GenBank Nos. FJ746679 and DQ202490). P. alni subsp. alni was recovered from trees at 3 of 20 riparian alder stands with symptoms. Pathogenicity of one representative isolate was confirmed by inoculating 10 3-year-old A. glutinosa seedlings grown in pots. One shallow cut was made into the bark at the collar level. A colonized agar plug, from the margin of an actively growing colony of P. alni subsp. alni, was inserted beneath the flap that was sealed with Parafilm. Five controls seedlings received only sterile CA agar plugs. Plants were incubated at 24°C and 95% humidity for 30 days. On inoculated plants, necroses progressed bidirectionally from the wound, and dead leaves and wilting of shoots were observed. P. alni subsp. alni was recovered from inoculated seedlings, but not from controls. To our knowledge, this is the first report of Phytophthora rot on alder caused by P. alni subsp. alni in Spain. References: (1) C. M. Brasier et al. Mycol. Res. 108:1172, 2004. (2) J. Gibbs et al. For. Comm. Bull. 126, 2003 (3) R. Ioos et al. Eur. J. Plant Pathol. 112:323, 2005. (4) T. Jung et al. Plant Pathol. 53:197, 2004.


Coatings ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 558
Author(s):  
Emilia-Adela Salca ◽  
Tomasz Krystofiak ◽  
Barbara Lis ◽  
Salim Hiziroglu

The objective of this study was to evaluate the glossiness of black alder wood (Alnus glutinosa L.) samples coated with two varnish types as a function of exposure to dry heat and artificial aging. The chemical resistance of the coated samples to cold liquids was also evaluated. Based on the findings in this work, it appears that the varnish types and their structural differences influenced the overall glossiness of the coated samples. The UV varnish exhibited higher gloss values than those coated with the water-borne product within the range of silky gloss and silky matte grades. The heat exposure influenced the surface glossiness of the UV-coated samples more than the samples coated with water-borne varnish. The overall gloss values of the samples decreased with the exposure time to artificial aging, resulting in no layer cracks. The cold household liquids left less visible traces on the surfaces and alcohol was found to be the strongest agent. This study could have practical applications in the furniture industry to produce value-added furniture units according to their specific conditions of indoor use.


2020 ◽  
Vol 144 (7-8) ◽  
pp. 378-378
Author(s):  
Simon Lendvai ◽  
Jurij Diaci ◽  
Dušan Roženbergar
Keyword(s):  

Područje poplavnih šuma crne johe (Alnus glutinosa (L.) Gaertn.) u Sloveniji čini samo 0,4 % (približno 4708 ha) ukupne površine šumskog zemljišta (Čater i sur., 2001.). Veći kompleks takvih sastojina u Sloveniji su Črni i Polanski Log, a istraživanje je provedeno na području potonjeg (slika 1). Kako čiste sastojine johe odlikuju brojne specifičnosti, potrebno im je prilagoditi šumskouzgojne postupke. Da bi se utvrdio odgovarajući intenzitet prorjede takvih sastojina, 1967. godine u Polanskom Logu postavljene su pokusne plohe. Od tada do 2018. godine na plohama je izvršeno pet do sedam mjerenja. Sva stabla na plohama su bila obrojčana. Izvršeno je mjerenje prsnih promjera i procjena sljedećih elemenata na stablima: pripadnost etaži, vitalnost, uzgojna perspektiva, uzgojna uloga, duljina krošnje i kvaliteta (tablica 3). Svaka ploha bila je podijeljena u tri polja (40 x 50 m) s različitim metodama rada: bez intervencije, umjereno i intenzivno prorjeđivanje. Uzgojni postupci koji su poduzeti tijekom praćenja pokusa prikazani su u tablici 2. Danas su te sastojine u zreloj fazi razvoja, stoga smo u ovom radu analizirali reakcije crne johe na različite intenzitete prorjeđivanja i dobivene rezultate usporedili s preporukama autora tradicionalnih uzgojnih modela i modela koji se temelje na situacijskoj njezi šuma. Ustanovili smo da se na plohama s intenzivnim prorjeđivanjem gustoća sastojine koja je u dobi između 50 i 70 godina i na kraju je ophodnje kreće od 295 do 690 kom/ha (slika 3), dok se na plohama bez intervencije ova vrijednost kreće u rasponu od 370 do 790 kom/ha. Drvne zalihe u istom su se razdoblju kretale u rasponu od 277 do 458 m<sup>3</sup>/ha na plohama s intenzivnim prorjeđivanjem, dok su na plohama bez intervencije bile veće, u rasponu od 309 do 516 m<sup>3</sup>/ha (slika 4). U to su se doba temeljnice nalazile u rasponu između 23 i 41 m<sup>2</sup>/ha na plohama s intenzivnim prorjeđivanjem, a na plohama bez intervencije u rasponu od 26 do čak 51 m<sup>2</sup>/ha (slika 5). Tijekom cijelog razdoblja praćenja ploha, stabla su, bez obzira na metodu rada, narasla za tri do četiri debljinska stupnja (slika 2). Na plohama s umjerenim prorjeđivanjem i onima bez intervencije, debljinski prirast stabala bio je skoro jednak (0,33 cm godišnje) (slika 6). Statistički je značajan veći debljinski prirast stabala na plohama s jako intenzivnim prorjeđivanjem (0,37 cm godišnje). Debljinski prirast dominantnih stabala bio je nešto veći, od 0,46 cm godišnje na plohama bez intervencije do 0,50 cm godišnje na plohama s jako intenzivnim prorjeđivanjem, ali statistički značajne razlike između metoda rada nisu utvrđene (slika 6). Međutim, otkrili smo da kod dominantnih stabala ne postoje statistički značajne razlike s obzirom na njihovu slojevitost, vitalnost, tendenciju, dužinu krošnje i kvalitete s obzirom na korištenu metodu rada. U usporedbi s uzgojnim modelima koji su se koristili za manji broj odabranih stabla, gustoća i temeljnica ispitivanih sastojina je znatno veća, a debljinski prirast manji. Autori tradicionalnih i modela s manjim brojem odabranih stabala zagovaraju rano prorjeđivanje takvih sastojina (tablica 1). Veće razlike nastaju u konačnom broju stabala po hektaru i u intenzitetu intervencije. Razlog malog debljinskog prirasta i razlike između metoda rada na našim plohama pripisali smo nedovoljnom intenzitetu i djelomično nedosljednoj provedbi postupka prorjeđivanja. Ipak, ukazala se potreba za intenzivnim prorjeđivanjem i pospješivanjem rasta stabala najvećeg prsnog promjera, vitalnosti i tendencije, lijepo oblikovane i duge krošnje (slika 7, slika 8).


2014 ◽  
Vol 56 (3) ◽  
pp. 135-140 ◽  
Author(s):  
Iwona Skrzecz ◽  
Alicja Sowińska ◽  
Wojciech Janiszewski

Abstract The aim of the study was to evaluate the possibility of using botanic antifeedants to reduce the damage caused by Melolontha spp. grubs. To achieve the objective, the experiments were established in semi-field conditions to estimate the antifeedant activity of rutin, quercetin (flavonoids from buckwheat Fagopyrum esculentum) and an extract from black alder Alnus glutinosa leaves against Melolontha melolontha grubs. The grubs were placed individually in the pots with a soil in which 2 year old Pinus sylvestris trees were planted. The pots were put in garden pavilions placed in the open area. Then the soil in the pots were watered with the emulsions of rutin, quercetin, an extract from A. glutinosa leaves, and with pure water-comparative variant. After 4 months, the weight and mortality of grubs were compared, as well as the weight of tree roots in all pots. There was no effect of the antifeedants on the development and extent of damage caused by M. melolontha grubs. The results do not indicate the use of botanic antifeedants in the protection of forests against the cockchafer grubs


Plant Disease ◽  
2012 ◽  
Vol 96 (1) ◽  
pp. 143-143 ◽  
Author(s):  
M. Cadavid ◽  
J. C. Ángel ◽  
J. I. Victoria

Symptoms of sugarcane orange rust were first observed in July 2010 on sugarcane (interspecific hybrid of Saccharum L. species) cv. CC 01-1884 planted in the La Cabaña Sugar Mill, Puerto Tejada, Colombia. Morphological features of uredinial lesions and urediniospores inspected with an optical microscope and scanning electron microscopy were distinct from common rust of sugarcane caused by Puccinia melanocephala Syd. & P. Syd., revealing spores identical morphologically to those described for the fungus P. kuehnii (Kruger) E. Butler, causal agent of sugarcane orange rust (1,3). Uredinial lesions were orange and distinctly lighter in color than pustules of P. melanocephala. Urediniospores were orange to light cinnamon brown, mostly ovoid to pyriform, variable in size (27.3 to 39.2 × 16.7 to 21.2 μm), with pronounced apical wall and moderately echinulate with spines evenly distributed. Paraphyses, telia, and teliospores were not observed. Species-specific PCR primers designed from the internal transcribed spacer (ITS)1, ITS2, and 5.8S rDNA regions of P. melanocephala and P. kuehnii were used to differentiate the two species (2). The primers Pm1-F and Pm1-R amplified a 480-bp product from P. melanocepahala DNA in leaf samples with symptoms of common rust. By contrast, the primers Pk1-F and Pk1-R generated a 527-bp product from presumed P. kuehnii DNA in leaf samples with signs of orange rust, confirming the identity as P. kuehnii. The Centro de Investigación de la Caña de Azúcar de Colombia (Cenicaña) started a survey of different cultivars in nurseries and experimental and commercial fields in the Cauca River Valley and collected leaf samples for additional analyses. Experimental cvs. CC 01-1884, CC 01-1866, and CC 01-1305 were found to be highly susceptible to orange rust and were eliminated from regional trials, whereas commercial cvs. CC 85-92 and CC 84-75, the most widely grown cultivars, were resistant. With the discovery of orange rust of sugarcane in Colombia, Cenicaña has incorporated orange rust resistance in the selection and development of new cultivars. To our knowledge, this is the first report of P. kuehnii on sugarcane in Colombia. Orange rust has also been reported from the United States, Cuba, Mexico, Guatemala, Nicaragua, El Salvador, Costa Rica, Panama, Ecuador, and Brazil. References: (1) J. C. Comstock et al. Plant Dis. 92:175, 2008. (2) N. C. Glynn et al. Plant Pathol. 59:703, 2010. (3) E. V. Virtudazo et al. Mycoscience 42:167, 2001.


Plant Disease ◽  
2003 ◽  
Vol 87 (2) ◽  
pp. 203-203 ◽  
Author(s):  
D. De Merlier ◽  
A. Chandelier ◽  
M. Cavelier

In the past decade, a new Phytophthora species inducing shoot canker on Rhododendron and dieback of Viburnum has been observed in Europe, mainly in Germany and the Netherlands, and California. This new pathogen has been named Phytophthora ramorum (3). In May 2002, a diseased Viburnum plant (Viburnum bodnantense) from the Plant Protection Service (Ministry of Agriculture, Belgium) was submitted to our laboratory for diagnosis. Symptoms included wilting, leaves turning from green to brown, discolored vascular tissues, and root necrosis. The plant came from a Belgian ornamental nursery that obtained supplies of stock plants from the Netherlands. Pieces of necrotic root tissue were excised, surface-disinfected, and transferred aseptically to a Phytophthora selective medium. P. ramorum was identified based on morphological characteristics, including the production of numerous, thin-walled chlamydospores (25 to 70 µm in diameter, average 43 µm) and deciduous, semi-papillate sporangia arranged in clusters. Radial growth after 6 days at 20°C on V8 juice agar was 2.8 mm per day. Random amplified microsatellite markers (RAMS) (2) from the total genomic DNA of the Belgian strain (CBS 110901) were similar to those of P. ramorum reference strains (CBS 101330, CBS 101332, and CBS 101554). Using PCR primers specific for P. ramorum, the identification was confirmed by W. A. Man in't Veld (Plantenziektenkundige Dienst, Wageningen, the Netherlands) (1). A pathogenicity test was carried out on three sterile cuttings of Rhododendron catawbiense (3). Brown lesions were observed on the inoculated cuttings after 6 to 7 days. None of the three uninoculated cuttings showed symptoms of infection. P. ramorum was reisolated from lesion margins on the inoculated cuttings. To our knowledge, this is the first report of the fungus from Belgium. Since our initial observation, we have found P. ramorum in other Belgian nurseries on R. yakusimanum. References: (1) M. Garbelotto et al. US For. Ser. Gen. Tech. Rep. PSW-GRT. 184:765, 2002. (2) J. Hantula et al. Mycol. Res. 101:565, 1997. (3) S. Werres et al. Mycol. Res. 105:1155, 2001.


Sign in / Sign up

Export Citation Format

Share Document