wood surfaces
Recently Published Documents


TOTAL DOCUMENTS

284
(FIVE YEARS 70)

H-INDEX

32
(FIVE YEARS 4)

Coatings ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 85
Author(s):  
Kent Davis ◽  
Scott Leavengood ◽  
Jeffrey J. Morrell

Wood exposed in exterior applications degrades and changes color due to weathering and fungal growth. Wood coatings can reduce the effects of weathering by reducing the damaging effects of ultraviolet light, reducing water absorption, and slowing fungal growth on the surface. Coating performance depends on the blend of resins, oils, and pigments and varies considerably among different wood species and conditions. Specific information describing expected service for different wood species and exposure conditions is not commonly available; certain combinations may work well in one climate or on one timber species, but underperform elsewhere. This study compared the performance of three industrial wood coatings on two wood species for two temperate climates under natural weathering conditions. Most of the coatings/species combinations lost their protective properties within 12 to 15 months; however, fungal growth was more prevalent at the wetter site than at the drier site for several combinations. Film-forming coatings often peeled and cracked, while penetrating coatings weathered and changed color relatively uniformly during the study. While no coating was completely effective, the results illustrate the benefits of using coatings that promote the development of natural, uniform-patinaed wood surfaces. The findings also guide coating maintenance programs for mass timber structures exposed to natural weathering conditions.


Author(s):  
Muhammad Awais ◽  
Michael Altgen ◽  
Mikko Mäkelä ◽  
Tiina Belt ◽  
Lauri Rautkari

AbstractThe uptake of moisture severely affects the properties of wood in service applications. Even local moisture content variations may be critical, but such variations are typically not detected by traditional methods to quantify the moisture content of the wood. In this study, we used near-infrared hyperspectral imaging to predict the moisture distribution on wood surfaces at the macroscale. A broad range of wood moisture contents were generated by controlling the acetylation degree of wood and the relative humidity during sample conditioning. Near-infrared image spectra were then measured from the surfaces of the conditioned wood samples, and a principal component analysis was applied to separate the useful chemical information from the spectral data. Moreover, a partial least squares regression model was developed to predict moisture content on the wood surfaces. The results show that hyperspectral near-infrared image regression can accurately predict the variations in moisture content across wood surfaces. In addition to sample-to-sample variation in moisture content, our results also revealed differences in the moisture content between earlywood and latewood in acetylated wood. This was in line with our recent studies where we found that thin-walled earlywood cells are acetylated faster than the thicker latewood cells, which decreases the moisture uptake during the conditioning. Dynamic vapor sorption isotherms validated the differences in moisture content within earlywood and latewood cells. Overall, our results demonstrate the capabilities of hyperspectral imaging for process analytics in the modern wood industry. Graphical abstract


Cellulose ◽  
2021 ◽  
Author(s):  
Claudia Gusenbauer ◽  
Karolina Peter ◽  
Etienne Cabane ◽  
Johannes Konnerth

AbstractChemical force microcopy, a variation of atomic force microscopy, opened the door to visualize chemical nano-properties of various materials in their natural state. The key function of this method is given by translating adhesion forces between a functionalized tip and the sample to chemical surface behavior. In force titration, these adhesion forces are studied in different pH buffers, which allows estimating the pKa value of the analyzed surface. Herein, we report the use of this method to study natural and chemically treated wood surfaces, which are of interest in sustainable material design. First, we show varying adhesion phenomena of OH- and COOH-functionalized tips on native spruce wood cells. Then, we demonstrate how peak force tapping with chemically functionalized tips can be used to estimate the pKa value of gold substrates (pKa ≈ 5.2) and different wood cell wall layers with high spatial resolution. Additionally, the swelling behavior of wood samples is analyzed in varying pH buffers. With the applied method, chemical surface properties of complex natural substrates can be analyzed. Graphical abstract


Viruses ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 2367
Author(s):  
Wen-Lin Su ◽  
Chih-Pei Lin ◽  
Hui-Ching Huang ◽  
Yao-Kuang Wu ◽  
Mei-Chen Yang ◽  
...  

To overcome the ongoing coronavirus disease 2019 (COVID-19) pandemic, transmission routes, such as healthcare worker infection, must be effectively prevented. Ultraviolet C (UVC) (254 nm) has recently been demonstrated to prevent environmental contamination by infected patients; however, studies on its application in contaminated hospital settings are limited. Herein, we explored the clinical application of UVC and determined its optimal dose. Environmental samples (n = 267) collected in 2021 were analyzed by a reverse transcription-polymerase chain reaction and subjected to UVC irradiation for different durations (minutes). We found that washbasins had a high contamination rate (45.5%). SARS-CoV-2 was inactivated after 15 min (estimated dose: 126 mJ/cm2) of UVC irradiation, and the contamination decreased from 41.7% before irradiation to 16.7%, 8.3%, and 0% after 5, 10, and 15 min of irradiation, respectively (p = 0.005). However, SARS-CoV-2 was still detected in washbasins after irradiation for 20 min but not after 30 min (252 mJ/cm2). Thus, 15 min of 254-nm UVC irradiation was effective in cleaning plastic, steel, and wood surfaces in the isolation ward. For silicon items, such as washbasins, 30 min was suggested; however, further studies using hospital environmental samples are needed to confirm the effective UVC inactivation of SARS-CoV-2.


Forests ◽  
2021 ◽  
Vol 12 (11) ◽  
pp. 1564
Author(s):  
Yanan Wang ◽  
Chengzhu Jin ◽  
Xinyi Wang ◽  
Qiushuang Li ◽  
Wenxuan Li ◽  
...  

The magnetron sputtering method was used to deposit nano-Al film on the wood surface of Pinus sylvestris L. var. mongholica Litv., and the material structure, electrical conductivity, mechanical properties and wetting properties were tested and characterized. When the sputtering time was 60 min, the average cross-grain sheet resistance of metallized wood was 695.9 mΩ, and the average along-grain sheet resistance was 227.2 mΩ. Load displacement decreased by more than 88%,elastic modulus increased by 49.2 times, hardness increased by 46 times andsurface hydrophobic angle was close to 130°. The grain size of the Al film on the wood surface was presented as nanoparticles, and the arrangement was uniform and dense. The results indicate that without any burden on the environment, the use of magnetron sputtering can quickly and efficiently achieve Al metallization on wood surfaces, so that the wood surface can obtain conductivity and hydrophobic properties. The elastic modulus and hardness of the wood surface were improved, the mechanical properties of the wood were effectively improved and the functional improvement of the wood was realized. This study provides a feasible method and basis for the study of the simple, efficient and pollution-free modification of wood.


Polymers ◽  
2021 ◽  
Vol 13 (21) ◽  
pp. 3841
Author(s):  
Svetlana Tretsiakova-McNally ◽  
Adeline Le Douarin ◽  
Paul Joseph ◽  
Malavika Arun

The present paper reports the preliminary results relating to the development, subsequent application, and testing of environmentally benign starch-based formulations for passive fire protection of wood substrates. This study evaluated the effectiveness of starch colloid coatings applied onto the wood surface with a view to improving its performance when exposed to the external heat flux (35 kW/m2) during cone calorimetric tests. The formulations were prepared from aqueous colloid solutions of either starch alone, or in combination with inorganic salts, such as: sodium carbonate, Na2CO3, potassium carbonate, K2CO3, and diammonium hydrogen phosphate, (NH4)2HPO4. The fire performance of Taeda pine wood samples, where their top surfaces were treated with these formulations, was compared with the control sample. The thermal and combustion characteristics of the tested samples were determined with the aid of thermo-gravimetric analysis (TGA), bomb and cone calorimetric techniques, and a steady state tube furnace coupled to an FT-IR spectrometer. A significant boost of fire protection was observed when starch formulations with added inorganic salts were applied onto the wood surfaces, compared with the control sample. For example, the presence of K2CO3 in starch colloid solutions resulted in a notable delay of the ignition and exhibited a reduction in the heat release parameters in comparison with the untreated wood substrate.


2021 ◽  
Vol 11 (21) ◽  
pp. 9965
Author(s):  
Mikael Ericsson ◽  
Dahniel Johansson ◽  
David Stjern

The theory and applications of Smart Factories and Industry 4.0 are increasing the entry into the industry. It is common in industry to start converting exclusive parts, of their production, into this new paradigm rather than converting whole production lines all at once. In Europe and Sweden, recent political decisions are taken to reach the target of greenhouse gas emission reduction. One possible solution is to replace concrete in buildings with Cross Laminated Timber. In the last years, equipment and software that have been custom made for a certain task, are now cheaper and can be adapted to fit more processes than earlier possible. This in combination, with lessons learned from the automotive industry, makes it possible to take the necessary steps and start redesigning and building tomorrows automated and flexible production systems in the wood industry. This paper presents a proof of concept of an automated inspection system, for wood surfaces, where concepts found in Industry 4.0, such as industrial Internet of things (IIoT), smart factory, flexible automation, artificial intelligence (AI), and cyber physical systems, are utilized. The inspection system encompasses, among other things, of the shelf software and hardware, open source software, and standardized, modular, and mobile process modules. The design of the system is conducted with future expansion in mind, where new parts and functions can be added as well as removed.


IAWA Journal ◽  
2021 ◽  
pp. 1-13
Author(s):  
Alan Dickson

Abstract A conventional stereo light microscope was used to image polished wood surfaces at cellular resolution over size scales of the growth ring or larger. Bandpass filtering and local area contrast enhancement were used to aid automatic image thresholding and binarisation. An estimate for the location and proportion of cell collapse was introduced based on the distance between uncollapsed cell lumens. Additionally, spatial associations between vessels were determined using a Euclidean distance transform. The analysis of pith to bark cores provided sufficient detail to show significant intra and inter-annual trends in Pinus radiata tracheid dimensions (wall thickness, wall area, and radial widths). These trends were consistent with expectations and in agreement with the literature. Measured cell dimensions may be influenced by cell collapse and deformation as a result of drying. The analysis of air, kiln and oven-dried Eucalyptus nitens showed that cell collapse was highly variable but generally more prominent in the outer third of growth rings. There were significant changes in vessel shape across the growth rings and vessel area was significantly reduced by drying. The technique provides an intermediate step between detailed microscopy and macroscopic imaging that allows spatial analysis at the wood cell level.


Author(s):  
Yu. Tsapko ◽  
◽  
A.Yu. Gorbachova ◽  
S.N. Mazurchuk ◽  
O. Bondarenko ◽  
...  

Abstract. Paints and varnishes are used to a large extent to protect wood surfaces in outdoor conditions, as they are easy to maintain and reapply. Also, when developing a coating, manufacturers are guided by the need to obtain a number of properties that generally determine its ability to protect against moisture. To obtain a protective coating that meets the specified requirements, it is necessary that the components that make up the coating belong directly to the group of protective materials or form such compounds under operating conditions, be able to adhere to the surface of the product. It was found that thermal modification provides a decrease in water absorption of wood. Additional processing of the wood surface helps to reduce moisture absorption by 2 times, and for samples modified at a temperature of 220 °C – 3 times. Geometric dimensional stability is also improved by a factor of 2. The effect of heat treatment on the water absorption of wood is somewhat less – for samples modified at 190 and 220 °C for more than 10 hours. Protective substances for thermally modified wood provided similar protection of open thermally modified surfaces of wood from the effects of water. The positive effect of thermal modification on a decrease in the level of water absorption has been established. It has been proven that it is temperature that has a significant effect on such changes. Since the protective coating is also susceptible to photochemical degradation, it is very important to renew it in a timely manner in accordance with the manufacturer's instructions for the pleasant appearance of wood surfaces during external use. The optimal ratio of components in the surface layer of thermally modified wood has been determined, which ensures the fulfillment of the task, namely for a mixture of oil and wax: the density of a wood – 724 kg/m3; oils – 70.0%; wax – 17.5%. Therefore, such treatment is beneficial for the protection and aesthetic appeal of wood products.


Sign in / Sign up

Export Citation Format

Share Document