scholarly journals Colonization of the Residues of Diverse Plant Species by Gibberella zeae and Their Contribution to Fusarium Head Blight Inoculum

Plant Disease ◽  
2008 ◽  
Vol 92 (5) ◽  
pp. 800-807 ◽  
Author(s):  
S. A. Pereyra ◽  
R. Dill-Macky

The presence of Fusarium spp. was examined in the residues of wheat, barley, corn, sunflower, pasture, and gramineous weed species common in wheat and barley cropping systems collected from no-tillage and reduced-tillage plots from February 2001 to March 2003 in Uruguay. Gibberella zeae was recovered from residues of wheat, barley, corn, sunflower, fescue, and the gramineous weeds Digitaria sanguinalis, Setaria spp., Lolium multiflorum, and Cynodon dactylon, except from birdsfoot trefoil or white clover. Of the Fusarium spp. obtained, G. zeae was the most frequently recovered from wheat and barley residues, while other species were more common in other crops. G. zeae declined over time in all residues examined. Wheat and barley residues produced more ascospores of G. zeae than corn or other gramineous residues. Sunflower residue did not support ascospore production, indicating that it probably did not contribute to primary inoculum. Wheat and barley residues supported G. zeae colonization longer in no-till than in reduced-tillage production systems and, thus, may represent major contributors to Fusarium head blight (FHB) inoculum in Uruguay. The presence of G. zeae in the gramineous components of pastures, weed species, and sunflower should be considered when implementing control strategies for FHB.

Author(s):  
Hussein M. Khaeim ◽  
Anthony Clark ◽  
Tom Pearson ◽  
Dr. David Van Sanford

Head scab is historically a devastating disease affecting not just all classes of wheat but also barley and other small grains around the world. Fusarium head blight (FHB), or head scab, is caused most often by Fusarium graminearum (Schwabe), (sexual stage – Gibberella zeae) although several Fusarium spp. can cause the disease. This study was conducted to determine the effect of mass selection for FHB resistance using an image-based optical sorter. lines were derived from the C0 and C2 of two populations to compare genetic variation within populations with and without sorter selection. Our overall hypothesis is that sorting grain results in improved Fusarium head blight resistance. Both of the used wheat derived line populations have genetic variation, and population 1 has more than population 17. They are significantly different from each other for fusarium damged kernel (FDK), deoxynivalenol (DON), and other FHB traits. Although both populations are suitable to be grown for bulks, population 1 seems better since it has more genetic variation as well as lower FDK and DON, and earlier heading date. Lines within each population were significantly different and some lines in each population had significantly lower FDK and DON after selection using an optical sorter. Some lines had significant reduction in both FDK and DON, and some others had either FDK or DON reduction. Lines of population 1 that had significant reduction, were more numerous than in population 17, and FDK and DON reduction were greater.


2021 ◽  
Vol 192 ◽  
pp. 103198
Author(s):  
Dimitrios Drakopoulos ◽  
Andreas Kägi ◽  
Johan Six ◽  
Alexander Zorn ◽  
Felix E. Wettstein ◽  
...  

Plant Disease ◽  
2004 ◽  
Vol 88 (7) ◽  
pp. 724-730 ◽  
Author(s):  
S. A. Pereyra ◽  
R. Dill-Macky ◽  
A. L. Sims

Survival and inoculum production of Gibberella zeae (Schwein.) Petch (anamorph Fusarium graminearum (Schwabe)), the causal agent of Fusarium head blight of wheat and barley, was related to the rate of wheat (Triticum aestivum L.) residue decomposition. Infested wheat residue, comprising intact nodes, internodes, and leaf sheaths, was placed in fiberglass mesh bags on the soil surface and at 7.5- to 10-cm and 15- to 20-cm depths in chisel-plowed plots and 15 to 20 cm deep in moldboard-plowed plots in October 1997. Residue was sampled monthly from April through November during 1998 and every 2 months through April to October 1999. Buried residue decomposed faster than residue placed on the soil surface. Less than 2% of the dry-matter residue remained in buried treatments after 24 months in the field, while 25% of the residue remained in the soil-surface treatment. Survival of G. zeae on node tissues was inversely related to the residue decomposition rate. Surface residue provided a substrate for G. zeae for a longer period of time than buried residue. Twenty-four months after the initiation of the trial, the level of colonization of nodes in buried residue was half the level of colonization of residue on the soil surface. Colonization of node tissues by G. zeae decreased over time, but increased for other Fusarium spp. Ascospores of G. zeae were still produced on residue pieces after 23 months, and these spores were capable of inducing disease. Data from this research may assist in developing effective management strategies for residues infested with G. zeae.


2017 ◽  
Vol 6 (5) ◽  
pp. 167-177
Author(s):  
Vipin Panwar ◽  
Ashok Aggarwal ◽  
Surinder Paul ◽  
Jitender Kumar ◽  
M. S. Saharan

Fusarium head blight (FHB) or head Scab is a very devastating fungal disease of wheat. Epidemics results with severe yield losses and overall seed quality reduction due to mycotoxins contaminated grains. Several species of Fusarium are found associated with the disease. But, incidence and severity of FHB and the composition of Fusarium species involved are reported to vary among geographical regions and years due to variations in climatic condi-tions and cropping practices. Climatic conditions, and even local variations in weather, can limit the range of species observed even if several are present, and influence their relative frequency of recovery. Our present study gives an idea about the distribution dynamics of FHB causing Fusarium spp. at three different locations in India. Most of the species can be found in much of geographical area affected but individual species dominate a specific re-gion. Analysis of the results of present study indicated that three Fusarium spp. i.e. F. graminearum, F. pallidoroseum and F. oxysporum were found as-sociated with FHB but F. graminearum was the dominant in all the location surveyed. Other two species are also associated with the disease but fre-quency was low. As these geographical locations represent different climatic conditions, the high relative distribution frequency of F. graminearum indi-cates its better adaptability to variable environmental conditions. Under-standing the pathogen distribution dynamics may also provide insights into the epidemiology and evolutionary potential of Fusarium spp. and could lead to improved management strategies under present climate change scenario.


Author(s):  
Sardar AMIN ◽  
Marin ARDELEAN ◽  
Vasile MOLDOVAN ◽  
Rodica CADAR

Fusarium head blight (FHB), caused by Fusarium spp., has become one of the most destructive diseases in the world’s wheat growing areas , especially in the humid and semihumid regions (Paillard et al. 2004, Mesterhazy 1978, Stack & Mullen 1985; Kiecana 1987; Kiecana et al. 1988). Six winter wheat cultivars, recently released and widely grown in Trasylvania, have been evaluated for FHB resistance during 2006. The evaluation was made by means of artificial inoculations with Fusarium graminearum and assesment of symptom intensity by computing AUDPC index (Area Under Developmental Progress Curve). Based on these data, two cultivars (Dumbrava and Turda 195) were considered as resistant, two cultivars (Ardeal and Arieşan) as medium resistant and other two cultivars (Fundulea 4 and GK Öthalom) as susceptible to FHB. The reaction to FHB of the six tested cultivars, based on the postharvest indices, showed significant differences among these cultivars as far as the yield elements and the total grain yield were considered. Actually, in the resistant cultivars, both the total grain yield and some of the yield elements (spike wight, grain weght/spike and 1000 kernel weigt) were significantly less affected by FHB than in medium resistant and susceptible cultivars.


Author(s):  
Tomasz Góral ◽  
Aleksander Łukanowski ◽  
Elzbieta Maluszynska ◽  
Kinga Stuper-Szablewska ◽  
Maciej Buśko ◽  
...  

Growing acreage and changing consumer preferences cause increasing interest in the cereal products originating from organic farming. Lack of results of objective test, however, does not allow drawing conclusions about the effects of cultivation in the organic system and comparison to currently preferred conventional system. Field experiment was conducted in organic and conventional fields. Thirty modern cultivars of winter wheat were sown. They were characterized for disease infection including Fusarium head blight, seed sowing value, the amount of DNA of the six species of Fusarium fungi as well as concentration of ergosterol and trichothecenes in grain. The intensity Fusarium head blight was at a similar level in both systems. However, Fusarium colonization of kernels expressed as ergosterol level or DNA concentration was higher for the organic system. It did not reflect in an increased accumulation of trichothecenes in grain, which was similar in both systems, but sowing value of organically produced seeds was lower. Significant differences between analyzed cropping systems and experimental variants were found. The selection of the individual cultivars for organic growing in terms of resistance to diseases and contamination of grain with Fusarium toxins was possible. Effects of organic growing differ significantly from the conventional and grain obtained such way can be recommended to consumers. There are indications for use of particular cultivars bred for conventional agriculture in the case of organic farming, and the growing organic decreases plant stress resulting from intense fertilization and chemical plant protection.


2016 ◽  
Vol 42 (2) ◽  
pp. 134-139 ◽  
Author(s):  
Erlei Melo Reis ◽  
Cristina Boareto ◽  
Anderson Luiz Durante Danelli ◽  
Sandra Maria Zoldan

ABSTRACT Fusarium head blight of wheat (Triticum aestivum), caused by the fungus Gibberella zeae, is a floral infecting disease that causes quantitative and qualitative losses to winter cereals. In Brazil, the sanitary situation of wheat has led to research in order to develop strategies for sustainable production, even under adverse weather conditions. To increase the knowledge of the relationship among the presence of anthesis, the infectious process, the disease progress and the saprophytic fungi present in wheat anthers, studies were conducted in the experimental field of University of Passo Fundo (UPF), using the cultivar Marfim, in the 2011 growing season. The disease incidence in spikes and spikelets was evaluated. The presence of exserted anthers increased the spike exposure time to the inoculum. The final incidence of fusarium head blight, in the field, was dependent on the presence of exserted anthers. The disease followed an aggregation pattern and its evolution increased with time, apparently showing growth according to secondary cycles. The fungi isolated from exserted anthers (Alternaria sp., Fusarium sp., Drechslera spp. and Epicoccum sp.) did not compete for the infection site of fusarium head blight in wheat, not interfering with the incidence of F. graminearum.


2019 ◽  
Vol 7 (10) ◽  
pp. 439 ◽  
Author(s):  
Tomasz Góral ◽  
Aleksander Łukanowski ◽  
Elżbieta Małuszyńska ◽  
Kinga Stuper-Szablewska ◽  
Maciej Buśko ◽  
...  

Growing acreage and changing consumer preferences cause increasing interest in the cereal products originating from organic farming. Lack of results of objective test, however, does not allow drawing conclusions about the effects of cultivation in the organic system and comparison to currently preferred conventional system. Field experiment was conducted in organic and conventional fields. Thirty modern cultivars of winter wheat were sown. They were characterized for disease infection including Fusarium head blight, seed sowing value, the amount of DNA of the six species of Fusarium fungi as well as concentration of ergosterol and trichothecenes in grain. The intensity Fusarium head blight was at a similar level in both systems. However, Fusarium colonization of kernels expressed as ergosterol level or DNA concentration was higher for the organic system. It did not reflect in an increased accumulation of trichothecenes in grain, which was similar in both systems, but sowing value of organically produced seeds was lower. Significant differences between analyzed cropping systems and experimental variants were found. The selection of the individual cultivars for organic growing in terms of resistance to diseases and contamination of grain with Fusarium toxins was possible. Effects of organic growing differ significantly from the conventional and grain obtained such way can be recommended to consumers. There are indications for use of particular cultivars bred for conventional agriculture in the case of organic farming, and the growing organic decreases plant stress resulting from intense fertilization and chemical plant protection.


Sign in / Sign up

Export Citation Format

Share Document