scholarly journals Survival and Inoculum Production of Gibberella zeae in Wheat Residue

Plant Disease ◽  
2004 ◽  
Vol 88 (7) ◽  
pp. 724-730 ◽  
Author(s):  
S. A. Pereyra ◽  
R. Dill-Macky ◽  
A. L. Sims

Survival and inoculum production of Gibberella zeae (Schwein.) Petch (anamorph Fusarium graminearum (Schwabe)), the causal agent of Fusarium head blight of wheat and barley, was related to the rate of wheat (Triticum aestivum L.) residue decomposition. Infested wheat residue, comprising intact nodes, internodes, and leaf sheaths, was placed in fiberglass mesh bags on the soil surface and at 7.5- to 10-cm and 15- to 20-cm depths in chisel-plowed plots and 15 to 20 cm deep in moldboard-plowed plots in October 1997. Residue was sampled monthly from April through November during 1998 and every 2 months through April to October 1999. Buried residue decomposed faster than residue placed on the soil surface. Less than 2% of the dry-matter residue remained in buried treatments after 24 months in the field, while 25% of the residue remained in the soil-surface treatment. Survival of G. zeae on node tissues was inversely related to the residue decomposition rate. Surface residue provided a substrate for G. zeae for a longer period of time than buried residue. Twenty-four months after the initiation of the trial, the level of colonization of nodes in buried residue was half the level of colonization of residue on the soil surface. Colonization of node tissues by G. zeae decreased over time, but increased for other Fusarium spp. Ascospores of G. zeae were still produced on residue pieces after 23 months, and these spores were capable of inducing disease. Data from this research may assist in developing effective management strategies for residues infested with G. zeae.

2020 ◽  
Vol 116 (11/12) ◽  
Author(s):  
Sinegugu P.N. Shude ◽  
Kwasi S. Yobo ◽  
Nokwazi C. Mbili

Fusarium head blight (FHB), also known as head scab, is a devastating fungal disease that affects small grain cereal crops such as wheat (Triticum aestivum L.). The predominant causal agent, Fusarium graminearum Schwabe (teleomorph: Gibberella zeae (Schwein.) Petch), is ranked the fourth most important fungal plant pathogen worldwide. Apart from yield and quality losses, mycotoxin production can occur from FHB infection, resulting in harmful effects on human and animal health. Some level of disease control may be achieved by using certain fungicides and agronomic practices plus host resistance. In South Africa, there are currently no registered fungicides or bio-fungicides, no resistant wheat cultivars and only limited control is achieved by cultural practices. Because effective disease reduction cannot be achieved by using a single strategy, the integration of multiple management strategies can enhance disease control. We review possible strategies for reducing the risk for FHB infections that are relevant to the context of South Africa and other wheat growing areas in Africa.


1995 ◽  
Vol 75 (4) ◽  
pp. 905-907 ◽  
Author(s):  
H. G. Nass ◽  
H. W. Johnston ◽  
C. R. Blatt ◽  
G. Atlin ◽  
R. B. Walton

AC Winsloe is a winter feed wheat (Triticum aestivum L. em. Thell.) with high grain yield, lodging resistance, and good winter survival. It is resistant to powdery mildew (caused by Erisyphe graminis D.C. ex Merat f. sp. tritici Marchal), moderately resistant to septoria leaf and glume blotch [caused by Septoria nodorum (Berk.) Berk.] and moderately resistant to fusarium head blight (caused by Fusarium graminearum Schwab and other Fusarium spp.). AC Winsloe is suitable for production in Eastern Canada, particularly in the Atlantic region. Key words:Triticum aestivum, wheat (winter), cultivar description


2008 ◽  
Vol 74 (21) ◽  
pp. 6513-6520 ◽  
Author(s):  
Rishi R. Burlakoti ◽  
Shaukat Ali ◽  
Gary A. Secor ◽  
Stephen M. Neate ◽  
Marcia P. McMullen ◽  
...  

ABSTRACT Gibberella zeae is one of the most devastating pathogens of barley and wheat in the United States. The fungus also infects noncereal crops, such as potatoes and sugar beets, and the genetic relationships among barley, wheat, potato, and sugar beet isolates indicate high levels of similarity. However, little is known about the toxigenic potential of G. zeae isolates from potatoes and sugar beets. A total of 336 isolates of G. zeae from barley, wheat, potatoes, and sugar beets were collected and analyzed by TRI (trichothecene biosynthesis gene)-based PCR assays. To verify the TRI-based PCR detection of genetic markers by chemical analysis, 45 representative isolates were grown in rice cultures for 28 days and 15 trichothecenes and 2 zearalenone (ZEA) analogs were quantified using gas chromatography-mass spectrometry. TRI-based PCR assays revealed that all isolates had the deoxynivalenol (DON) marker. The frequencies of isolates with the 15-acetyl-deoxynivalenol (15-ADON) marker were higher than those of isolates with the 3-acetyl-deoxynivalenol (3-ADON) marker among isolates from all four crops. Fusarium head blight (FHB)-resistant wheat cultivars had little or no influence on the diversity of isolates associated with the 3-ADON and 15-ADON markers. However, the frequency of isolates with the 3-ADON marker among isolates from the Langdon, ND, sampling site was higher than those among isolates from the Carrington and Minot, ND, sites. In chemical analyses, DON, 3-ADON, 15-ADON, b-ZEA, and ZEA were detected. All isolates produced DON (1 to 782 μg/g) and ZEA (1 to 623 μg/g). These findings may be useful for monitoring mycotoxin contamination and for formulating FHB management strategies for these crops.


2004 ◽  
Vol 94 (12) ◽  
pp. 1342-1349 ◽  
Author(s):  
P. A. Paul ◽  
S. M. El-Allaf ◽  
P. E. Lipps ◽  
L. V. Madden

Rain splash dispersal of Gibberella zeae, causal agent of Fusarium head blight of wheat, was investigated in field studies in Ohio between 2001 and 2003. Samplers placed at 0, 30, and 100 cm above the soil surface were used to collect rain splash in wheat fields with maize residue on the surface and fields with G. zeae-infested maize kernels. Rain splash was collected during separate rain episodes throughout the wheat-growing seasons. Aliquots of splashed rain were transferred to petri dishes containing Komada's selective medium, and G. zeae was identified based on colony and spore morphology. Dispersed spores were measured in CFU/ml. Intensity of splashed rain was highest at 100 cm and ranged from 0.2 to 10.2 mm h-1, depending on incident rain intensity and sampler height. Spores were recovered from splash samples at all heights in both locations for all sampled rain events. Both macroconidia and ascospores were found based on microscopic examination of random samples of splashed rain. Spore density and spore flux density per rain episode ranged from 0.4 to 40.9 CFU cm-2 and 0.4 to 84.8 CFU cm-2 h-1, respectively. Spore flux density was higher in fields with G. zeae-infested maize kernels than in fields with maize debris, and generally was higher at 0 and 30 cm than at 100 cm at both locations. However, on average, spore flux density was only 30% lower at 100 cm (height of wheat spikes) than at the other heights. The log of spore flux density was linearly related to the log of splashed rain intensity and the log of incident rain intensity. The regression slopes were not significantly affected by year, location, height, and their interactions, but the intercepts were significantly affected by both sampler height and location. Thus, our results show that spores of G. zeae were consistently splash dispersed to spike heights within wheat canopies, and splashed rain intensity and spore flux density could be predicted based on incident rain intensity in order to estimate inoculum dispersal within the wheat canopy.


Author(s):  
Hussein M. Khaeim ◽  
Anthony Clark ◽  
Tom Pearson ◽  
Dr. David Van Sanford

Fusarium head blight (FHB) or head scab, caused by Fusarium graminearum Schwabe [telomorph: Gibberella zeae Schwein.(Petch)], is one of the most destructive diseases of wheat (Triticum aestivum L.) worldwide. Numerous strategies for scab resistance breeding are in use, including phenotypic selection for low severity and marker-assisted selection for resistance QTL. The most destructive consequences of scab are evidenced through a reduction in grain quality, and the presence of mycotoxins, the most common of which is deoxynivalenol (DON). Thus, there is great interest among breeders in selecting for resistance to both of these traits. To this end, a study was devised as follows. In 2010, 20 bulk F3 SRW wheat populations with scab resistant parents in their pedigrees were harvested by population from unreplicated plots near Lexington, KY. The plots were affected by a naturally occurring mild-moderate scab epidemic. The grain was sorted on a USDA/ARS and National Manufacturing Seed Sorter System with color camera according to a calibration that reflected visual differences between asymptomatic grain and grain showing FHB symptoms. This process was repeated in 2011 using grain from plots that had conidial suspension applied at anthesis. In 2012, an unreplicated plot study of the C0, C1 and C2 cycles of selection, inoculated with grain spawn and conidial suspension, was evaluated for Fusarium damaged kernels (FDK) and DON concentration. An additional cycle of selection was conducted by running the bulk grain through the sorter. In October 2012, 4 selection cycles of the 20 populations were planted in a RCB experiment at Lexington and Princeton, KY. Bulk populations were planted in both scab nursery and plots, and C3 accepted and rejected of all populations and derived lines of 2 populations were planted in the scab nursery in Lexington, KY. Some populations had FDK and DON reduction with selection, and some derived lines had either numerical or significant reduction with selection. Although the accepted fraction had non-significant reduction compared with the rejected fraction over the populations, FDK and DON means were obviously lower in accepted than in rejected fractions.


Plant Disease ◽  
2008 ◽  
Vol 92 (5) ◽  
pp. 800-807 ◽  
Author(s):  
S. A. Pereyra ◽  
R. Dill-Macky

The presence of Fusarium spp. was examined in the residues of wheat, barley, corn, sunflower, pasture, and gramineous weed species common in wheat and barley cropping systems collected from no-tillage and reduced-tillage plots from February 2001 to March 2003 in Uruguay. Gibberella zeae was recovered from residues of wheat, barley, corn, sunflower, fescue, and the gramineous weeds Digitaria sanguinalis, Setaria spp., Lolium multiflorum, and Cynodon dactylon, except from birdsfoot trefoil or white clover. Of the Fusarium spp. obtained, G. zeae was the most frequently recovered from wheat and barley residues, while other species were more common in other crops. G. zeae declined over time in all residues examined. Wheat and barley residues produced more ascospores of G. zeae than corn or other gramineous residues. Sunflower residue did not support ascospore production, indicating that it probably did not contribute to primary inoculum. Wheat and barley residues supported G. zeae colonization longer in no-till than in reduced-tillage production systems and, thus, may represent major contributors to Fusarium head blight (FHB) inoculum in Uruguay. The presence of G. zeae in the gramineous components of pastures, weed species, and sunflower should be considered when implementing control strategies for FHB.


2017 ◽  
Vol 2 (3) ◽  
pp. 154-161
Author(s):  
Jiazheng Yuan ◽  
Michelle Zhu ◽  
Khalid Meksem ◽  
Matt Geisler ◽  
Patrick Hart ◽  
...  

Mycotoxin deoxynivalenol (DON), produced by Gibberella zeae (Schwein.) Petch (teleomorph of Fusarium graminearum Schwabe) was known to be both a virulence factor in the pathogenesis of Triticum aestivum L. (wheat) and an inhibitor of Arabidopsis thaliana L. seed germination. Fusarium graminearum causes both Gibberella ear rot in maize (Zea mays L.) and Fusarium head blight (FHB) in wheat and barley. Arabidopsis thaliana was also a host for the related root rot pathogen F. virguliforme Aoki. A. thaliana seedling growth was reduced by the pathogen in a proportional response to increasing spore concentrations. Here, the changes in transcript abundances corresponding to 10,560 A. thaliana expressed sequence tags (ESTs) was compared with changes in 192 known plant defense and biotic/abiotic stress related genes in soybean roots after infestation with F. virguliforme. A parallel comparison with a set of resistance pathways involved in response to the DON toxicity in A. thaliana was performed. A. thaliana data was obtained from the AFGC depository. The variations of transcript abundances in Arabidopsis and soybean treated with pathogen suggest that both plants respond to the pathogen mainly by common, possibly global responses with some specific secondary metabolic pathways involved in defense. In contrast, DON toxin appeared to impact central metabolisms in Arabidopsis plants with significant alterations ranging from the protein metabolism to redox production. Several new putative resistance pathways involved in responding to both pathogen and DON infestation in soybean and A. thaliana were identified.


Toxins ◽  
2022 ◽  
Vol 14 (1) ◽  
pp. 45
Author(s):  
Elina Sohlberg ◽  
Vertti Virkajärvi ◽  
Päivi Parikka ◽  
Sari Rämö ◽  
Arja Laitila ◽  
...  

Fusarium head blight (FHB) is an economically important plant disease. Some Fusarium species produce mycotoxins that cause food safety concerns for both humans and animals. One especially important mycotoxin-producing fungus causing FHB is Fusarium graminearum. However, Fusarium species form a disease complex where different Fusarium species co-occur in the infected cereals. Effective management strategies for FHB are needed. Development of the management tools requires information about the diversity and abundance of the whole Fusarium community. Molecular quantification assays for detecting individual Fusarium species and subgroups exist, but a method for the detection and quantification of the whole Fusarium group is still lacking. In this study, a new TaqMan-based qPCR method (FusE) targeting the Fusarium-specific elongation factor region (EF1α) was developed for the detection and quantification of Fusarium spp. The FusE method was proven as a sensitive method with a detection limit of 1 pg of Fusarium DNA. Fusarium abundance results from oat samples correlated significantly with deoxynivalenol (DON) toxin content. In addition, the whole Fusarium community in Finnish oat samples was characterized with a new metabarcoding method. A shift from F. culmorum to F. graminearum in FHB-infected oats has been detected in Europe, and the results of this study confirm that. These new molecular methods can be applied in the assessment of the Fusarium community and mycotoxin risk in cereals. Knowledge gained from the Fusarium community analyses can be applied in developing and selecting effective management strategies for FHB.


2009 ◽  
Vol 89 (1) ◽  
pp. 103-106 ◽  
Author(s):  
L. Tamburic-Ilincic ◽  
A. W. Schaafsma

Gibberella zeae, Fusarium verticillioides and F. subglutinans are the most important causes of Fusarium stalk rot in corn (Zea mays L.). Gibberella zeae also causes fusarium head blight in wheat (Triticum aestivum L.) and gibberella ear rot in corn. The objectives of this study were to investigate prevalence of Fusarium species in the stalks of seed corn over time and to investigate the influence of sampling time and internode position on Fusarium spp. and G. zeae, particularly. Fusarium subglutinans and G. zeae were the most frequently recovered species from asymptomatic host tissue and from pink discoloration on stalks, respectively. More G. zeae was isolated from the basal internode of stalks than from the higher ones closer to harvest time. Other species isolated from seed corn stalks over time included F. verticillioides, F. oxysporum, F. sporotrichioides and F. equiseti. A similar spectrum of Fusarium species was identified from corn ears and from winter wheat across southwestern Ontario. Key words: Zea mays L., Fusarium spp.


2020 ◽  
pp. 1-14
Author(s):  
I.S. Hofgaard ◽  
H.U. Aamot ◽  
T. Seehusen ◽  
H. Riley ◽  
R. Dill-Macky ◽  
...  

To mitigate the risk of erosion and nutrient runoff, reduced tillage has become more prevalent in Norway. Within within recent decades, there have been some years with relatively high occurrence of Fusarium head blight and mycotoxins in Norwegian cereal grain. This is thought to have been caused by an increased inoculum potential (IP) of Fusarium spp. due to larger amount of crop residues remaining on the soil surface, in combination with weather conditions promoting fungal growth and infection of cereal plants. The objective of this work was to elucidate the influence of different tillage practices on the IP of Fusarium spp. and the subsequent Fusarium-infection and mycotoxin contamination of spring wheat grain at harvest. Tillage trials were conducted at two locations in southeast Norway (Solør and Toten) over three years, 2010-2012. Residues of wheat from the previous year were collected in spring. Fusarium avenaceum and Fusarium graminearum were the most common Fusarium species recorded on wheat straw residues. IP was calculated as the percentage of the residues infested with Fusarium spp. multiplied by the proportion of the soil surface covered with residues. The IP of Fusarium spp. was lower in ploughed plots compared to those tilled with harrowing only. Ploughing in spring resulted in a similarly low IP as autumn ploughing. In contrast, harrowing in autumn generally reduced IP more than did spring harrowing. The mycotoxin levels in the harvested wheat were generally low, except for deoxynivalenol at high levels in Solør 2011. Despite a lower IP of ploughed versus harrowed plots, this was not reflected in the content of Fusarium and mycotoxins in harvested grain. The Fusarium species that dominated in the residues examined in this study were the same as those detected in the harvested grain, supporting the finding that residues are an important source of inoculum.


Sign in / Sign up

Export Citation Format

Share Document