scholarly journals First Report of Wilt Caused by Verticillium dahliae on Cosmos (Cosmos bipinnatus) in Italy

Plant Disease ◽  
2009 ◽  
Vol 93 (8) ◽  
pp. 846-846 ◽  
Author(s):  
A. Carlucci ◽  
F. Lops ◽  
S. Frisullo

Cosmos (Cosmos bipinnatus Cav., Asteraceae) is an herbaceous plant that is grown for landscape use. During August and September of 2008 in five public and three private gardens located in Monopoli (Apulia, southern Italy), 3 to 8% of the plants showed severe symptoms of vine decline, stunting, gradual yellowing and wilting of the leaves, and final collapse of the whole plant. External symptoms were associated with brown or black streaking of the vascular tissue of roots, collar, and stem. Dead plants had numerous microsclerotia embedded in the xylem of plant tissues. Stem, collar, and root sections (0.5 cm long) from symptomatic plants collected in five gardens were surface disinfested in 5% NaOCl for 1 min and transferred to petri dishes containing potato dextrose agar (PDA) amended with 100 μg ml–1 of streptomycin sulfate and 10 μg ml–1 of neomycin. After 10 days of incubation, at 25°C in the dark, hyaline hyphae with dark microsclerotia (37 to 112 μm) and verticillate conidiophores were produced. Conidia were single celled and hyaline with dimensions of 3.3 to 7.8 × 1.8 to 3.3 μm (mean dimensions 4.2 × 2.5 μm). According to morphological characteristics, the fungus was identified as Verticillium dahliae Kleb. (1) (isolates no. Vd1818, Vd1819, and Vd1820 stored in a collection at the Department DiSACD, University of Foggia). Molecular analyses were performed on the basis of nucleotide sequences of the internal transcribed spacer region (ITS1-5.8S-ITS2) of ribosomal DNA. ITS sequences of this fungus, compared with sequences found in GenBank and attributed to V. dahliae (no. GQ130129, GQ130130, GQ130131), showed 98 to 99% sequence similarity. Healthy 40-day-old plants of C. bipinnatus (garden cosmos) cv. Sonata Pink Blusk and C. sulphurous (yellow cosmos) cv. Bilbo, obtained from seeds previously disinfested for 1 min in 3% NaOCl and ascertained to be healthy by isolation on PDA medium, were used for pathogenicity tests. Plants were grown in 3-liter pots in a steam-disinfested peat, sand, and soil mixture (2:1:1) in the greenhouse at 23 to 26°C. Ten plants of each cultivar were inoculated by root dipping into a conidial suspension of each fungal isolate (1.5 × 106 CFU ml–1). Six noninoculated cosmos plants of each cultivar served as controls. The experiment was repeated three times. First symptoms of wilting were observed on all inoculated plants of each cultivar 20 days after the inoculation; at 40 days, symptom severity ratings on plants were taken, in which 1 = asymptomatic, 2 = stunted, 3 = wilting, and 4 = dead. All three isolates caused vascular discoloration, stunting, wilting, and plant death. The mean disease rating was 3.2 and did not differ significantly among isolates. The pathogen was consistently reisolated from infected plants, fulfilling Koch's postulates. Noninoculated plants remained healthy. To our knowledge, this is the first report of Verticillium wilt on cosmos in Italy. The finding is important since other ornamental plants that are susceptible to Verticillium wilt are also grown in landscapes in the region. The disease was previously reported in Turkey (2). References: (1) G. F. Pegg and B. L. Brandy. Verticillium Wilts. CABI Publishing, Wallingford, UK, 2002. (2) E. Sezgin et al. Turk. Phytopathol. 14:43, 1985.

Plant Disease ◽  
2013 ◽  
Vol 97 (1) ◽  
pp. 145-145
Author(s):  
A. Garibaldi ◽  
S. Rapetti ◽  
P. Martini ◽  
L. Repetto ◽  
D. Bertetti ◽  
...  

Tetragonia tetragonioides (New Zealand spinach, Aizoaceae) is an Australasian annual species that occurs naturally in Italy, where it is cultivated for the edible young shoots and succulent leaves. In September 2011, a previously unknown wilt was observed in 10 private gardens, each 0.1 to 0.5 ha, near Castellaro, Northern Italy, on 7-month-old New Zealand spinach plants. Leaves wilted, starting from the collar and moving up the plant, and vascular tissues showed brown streaks in the roots, crowns, and stems. Diseased plants were stunted with small, chlorotic leaves. Infected stems and leaves then wilted, and plants often died. Of about 500 plants, 30% were affected. Stems of 10 diseased plants were disinfected with 1% NaOCl for 1 min. Sections of symptomatic vascular tissue were plated on potato dextrose agar. After 3 days at 23 ± 1°C, colonies developed that were white and turned a grey to dark green color. Irregular, black microsclerotia (32.0) 63.1 ± 16.8 μm (106.1) × (18.7) 39.1 ± 12.3 μm (65.8) developed in hyaline hyphae after 8 days. Hyaline, elliptical, single-celled conidia (2.7) 3.8 ± 0.6 μm (4.8) × (1.9) 2.6 ± 0.5 μm (3.5) developed on verticillate conidiophores with three phialides at each node. Based on these morphological characteristics, the fungus was identified as Verticillium dahliae (1). The internal transcribed spacer (ITS) region of rDNA was amplified for one isolate using the primers ITS1/ITS4 (3) and sequenced (GenBank Accession No. JX308315). BLASTn analysis of the 479-bp segment showed 100% homology with the ITS sequence of a V. dahliae isolate (AB551206). Pathogenicity tests were performed twice using 60-day-old plants of T. tetragonioides. Unwounded roots of eight plants were dipped for 1 min in a conidial suspension (5 × 107 conidia/ml) of one isolate of V. dahliae obtained from the original infected New Zealand spinach plants, and grown in potato dextrose broth. The inoculated plants were transplanted into 2-liter pots (1 plant/pot) containing steamed potting mix (sphagnum peat-perlite-pine bark-clay; 50:20:20:10) and maintained in a growth chamber at 20 to 24°C and 50 to 80% RH. Eight plants immersed in sterile water served as a control treatment. Wilt symptoms were observed 30 days after inoculation, with vascular discoloration in the roots, crowns and stems. V. dahliae was reisolated consistently from infected tissues, but not from the control plants that remained healthy. Pathogenicity was also tested using the same method on plants of four cultivars (five plants/cultivar) of Spinacia oleracea (Matador, Asti, Merlo Nero, and America). Wilt symptoms developed on all cultivars and V. dahliae was reisolated from each inoculated plant. No fungal colonies were reisolated from control plants, which remained healthy. To our knowledge, this is the first report of Verticillium wilt caused by V. dahliae on T. tetragonioides in Italy, as well in Europe. V. dahliae was reported on T. tetragonioides in Canada (2). At this time, the economic impact of Verticillium wilt on New Zealand Spinach in Italy is limited, although the use of this vegetable in Italy is increasing. References: (1) G. F. Pegg and B. L. Brady. Verticillium Wilts. CABI Publishing, Wallingford, UK, 2002. (2) M. J. Richardson. Page 387 in: An Annotated List of Seed-Borne Diseases, Fourth Edition. International Seed Testing Association, Zurich, Switzerland, 1990. (3) T. J. White et al. Page 315 in: PCR Protocols. A Guide to Methods and Applications. Academic Press, San Diego, CA, 1990.


Plant Disease ◽  
2007 ◽  
Vol 91 (6) ◽  
pp. 770-770 ◽  
Author(s):  
A. Garibaldi ◽  
G. Gilardi ◽  
M. L. Gullino

Lettuce (Lactuca sativa L.) is an important crop used for fresh and processing markets in Italy and is grown on more than 21,000 ha. During October and November of 2006, wilt symptoms were observed on field-grown lettuce, cv. Estelle, in Forlì, Emila Romagna (northeastern Italy) and on cv. Ballerina grown under plastichouses in Piedmont (northwestern Italy). Both lettuce cultivars were of a butterhead type. Affected plants were stunted and developed yellow leaves with brown or black streaks in the vascular tissue. Yellowing started from the external leaves. Discoloration was observed in the vascular tissue of roots, crown, and leaves. A fungus was consistently and readily isolated from symptomatic vascular tissue, previously disinfested in 1% sodium hypochlorite, when cultured on potato dextrose agar (PDA). Microscopic observations revealed hyaline hyphae with many ovoid, dark microsclerotia measuring 32 to 43 × 16 to 26 μm developing after 15 days of growth at 18°C in the dark. Conidiophores showed two verticils of three elements. Conidia were hyaline, elliptical, single celled, and measured 3.5 to 8.5 × 1.8 to 4.3 μm (average 5.5 × 2.5 μm). According to its morphological characteristics, the fungus was identified as Verticillium dahliae (2). Healthy, 20-day-old lettuce plants, cvs. Principessa and Maxima, both belonging to the butterhead type, were separately inoculated by root dip with a conidial suspension (106/ml) of two isolates of V. dahliae isolated, respectively, at Forlì and Torino. Noninoculated lettuce plants served as control treatments. Plants (10 per treatment) were grown in pots (10-liter vol.) in a steam-disinfested peat/perlite/sand (3:1:1 vol/vol) substrate and were maintained in a glasshouse at temperatures ranging between 17 and 22°C and relative humidity ranging between 60 and 70%. First wilt symptoms and vascular discoloration in the roots, crown, and veins developed 40 days after the artificial inoculation. Forty percent of the plants were affected in the case of cv. Maxima and 30% for cv. Principessa. Noninoculated plants remained healthy. The pathogenicity tests were repeated twice. To our knowledge, this is the first report in Italy of Verticillium wilt on lettuce. The disease has been previously reported in Greece (1) and the United States (3). Currently, Verticillium wilt of lettuce seems restricted in Italy to very few farms in the two locations; moreover, its incidence is very low (0.05%). References: (1) E. K. Ligoxigakis et al. Phytoparasitica 30:141, 2002. (2) G. F. Pegg and B. L. Brady. Verticillium Wilts. CABI Publishing, Wallingford, UK, 2002. (3) G. E. Vallad et al. Plant Dis. 89:317, 2005.


Plant Disease ◽  
2008 ◽  
Vol 92 (9) ◽  
pp. 1367-1367 ◽  
Author(s):  
A. Garibaldi ◽  
D. Bertetti ◽  
M. L. Gullino

Rudbeckia fulgida (common name orange coneflower) is an herbaceous perennial (Asteraceae) grown in full sun in perennial borders in gardens. At the end of the summer of 2007, in a public garden located in Turin (northern Italy), symptoms of vascular wilt and stunting were observed on approximately 80% of the plants grown in a mixed border. Initial symptoms were yellowing of external leaves and brown or black streaks in the vascular tissue of roots, crown, and leaves. A fungus was consistently and readily isolated on potato dextrose agar from symptomatic vascular tissue previously disinfested in 1% sodium hypochloride. Ovoid, dark microsclerotia, 41 to 108 μm, developed in hyaline hyphae after 10 days of growth at 23°C (12 h of light and 12 h of dark). Hyaline, elliptical, single-celled conidia, 3.2 to 7.3 × 2.1 to 3.7 (average 4.7 × 2.8) μm, developed on verticillate conidiophores. On the basis of these morphological characteristics, the fungus was identified as Verticillium dahliae (4). The internal transcribed spacer (ITS) region of rDNA was amplified using primers ITS4/ITS6 and sequenced. BLASTn analysis (1) of the 530 bp showed a 100% homology with the sequence of V. dahliae. The nucleotide sequence has been assigned GenBank Accession No. EU 627007. Healthy, 30-day-old R. fulgida plants were grown in a steam-disinfested mix of sphagnum peat:pomix:pine bark:clay (50:20:20:10) infested with a conidial suspension (1.5 × 106/ml) of three isolates of V. dahliae isolated from infected plants. Noninoculated plants served as controls. Plants (16 per treatment) were grown in pots (3 liter vol) and maintained in a glasshouse at temperatures between 22 and 25°C and relative humidity between 50 and 70%. First wilt symptoms and vascular discoloration in the roots, crown, and veins developed 17 days after inoculation. Noninoculated plants remained healthy. The pathogenicity tests were carried out twice. To our knowledge, this is the first report in Italy of Verticillium wilt on R. fulgida. Wilts caused by V. dahliae on R. laciniata in Poland (3) and V. albo-atrum on R. hirta in the United States (2) were previously reported. The importance and economic impact of this disease is currently limited but may increase because of the popularity of Rudbeckia spp. in private and public parks. References: (1) S. F. Altschul et al. Nucleic Acids Res. 25:3389, 1997. (2) D. F. Farr et al. Fungi on Plants and Their Products in the United States. The American Phytopathological Society, St Paul, MN, 1989. (3) B. Leski. Rocz. Nauk Roln. 253, 1974. (4) G. F. Pegg and B. L. Brady. Verticillium Wilts. CABI Publishing, Wallingford, UK, 2002.


Plant Disease ◽  
2009 ◽  
Vol 93 (4) ◽  
pp. 432-432 ◽  
Author(s):  
M. Berbegal ◽  
J. Armengol

Faba bean (Vicia faba L.) crops in eastern-central Spain are usually grown in rotation or double cropped with artichoke (Cynara cardunculus L. var. scolymus (L.) Fiori). In this region, artichoke is grown annually and is severely affected by Verticillium dahliae Kleb. (1). During February of 2007, wilt symptoms were observed at harvesting time on faba bean fields located in Castellón Province (eastern-central Spain). Symptoms consisted of leaf yellowing, wilting, and gradual death of the leaves while stems generally remained green except for severely affected plants. The vascular tissue in the stems showed a tan-to-light brown discoloration and plants were stunted. For isolation, crown and stem sections (10 cm long) were surface disinfected for 1 min in 1.5% NaOCl and washed twice with sterile distilled water. The sections were cut longitudinally and small pieces of discolored vascular tissue were plated onto potato dextrose agar (PDA) amended with streptomycin sulfate (0.5 g liter–1). Plates were incubated at 25°C in the dark. V. dahliae was consistently isolated and colonies transferred to PDA were identified on the basis of the presence of microsclerotia and conidiophore morphology. Identity of monoconidial isolates 3H, 4H, 7H, and 8H was confirmed by specific multiplex nested-PCR assays using primers NDf/NDr in the first PCR round and INTND2f/INTND3r/MCR2B in the second round (2). PCR markers amplified with these primers were originally developed for the detection and vegetative compatibility group (VCG) identification of V. dahliae isolates infecting artichoke plants. Isolates 3H, 4H, 7H, and 8H amplified the 688-bp and the 964-bp markers indicating that they belong to VCG2B. Recent studies identified VCG2B as the prevalent group in the population of V. dahliae affecting artichoke in Castellón Province (3). Pathogenicity of two selected isolates, 3H and 7H, was determined on faba bean (cv. Muchamiel) and artichoke seedlings (cv. Madrigal) at the two-true-leaf stage. Seedlings were inoculated by watering the roots with 25 ml of a conidial suspension (106 conidia ml–1) harvested from 3-week-old cultures grown on PDA. Ten replicates (each one in individual pots) for each isolate and plant species were used, with an equal number of control plants. Plants were maintained in a greenhouse at 23 to 25°C. Within 1 month of inoculation, symptoms developed on all inoculated plants as severe stunting, leaf necrosis, and wilting. The fungus was reisolated from vascular tissues of the crown area and the stems of inoculated seedlings, completing Koch's postulates. Symptoms were not visible in the control seedlings and V. dahliae was not isolated from them. To our knowledge, this is the first report of V. dahliae infecting faba bean in Spain. Verticillium wilt had been previously reported on V. faba in Greece (4). Verticillium wilt of faba bean may bear importance in the epidemiology of the disease in artichoke as an alternative host for inoculum increase and survival of V. dahliae under field conditions. References: (1) M. Berbegal et al. Plant Dis. 91:1131, 2007. (2) M. Collado-Romero et al. Online publication. doi:10.1111/j.1365-3059.2008.01981.x. Plant Pathol., 2008. (3) R. M. Jiménez-Díaz et al. Phytopathology 96:288, 2006. (4) E. K. Ligoxigakis and D. J. Vakalounakis. Plant Pathol. 43:755, 1994.


Plant Disease ◽  
2009 ◽  
Vol 93 (8) ◽  
pp. 841-841 ◽  
Author(s):  
L. Zhang ◽  
G. L. Zhang ◽  
X. Qian ◽  
G. Y. Li

Verticillium dahliae Kleb. causes Verticillium wilt in large numbers of crops all over the world. Common symptoms caused by the pathogen include yellowing, wilting of leaves, and discoloration in vascular tissue of the stem. In June 2007, symptoms of Verticillium wilt were observed in a grapevine (Vitis vinifera) field in the Shihezi Region of Xinjiang. To isolate the pathogen, stem segments (0.5 cm long) were surface sterilized with 1% HgCl2 for 1 min and then dipped in 70% ethanol for 10 s. The sterilized tissues were rinsed with sterile water and incubated in the dark for 7 days at 25°C on potato dextrose agar (PDA) medium. The fungus growing from the diseased tissue showed dark colonies that produced verticillate conidiophores with two to three layers with colorless, ovoid, unicellular conidia and small, black microsclerotia, which are characteristics of V. dahliae (3). To confirm its identity, ribosomal DNA fragments (regions ITS1, 5.8S rDNA, and ITS4) were PCR amplified with primer pair ITS1/ITS4 (4) and sequenced (GenBank Accession No. FJ475122). Sequential analysis revealed that the rDNA region of the fungus isolated from grapevine was identical to that of a Greek strain of V. dahliae (GenBank Accession No. AF104926). Furthermore, the specific fragment (1,500 bp) of nondefoliating pathotype of V. dahliae (1) was PCR amplified from 24 grapevine isolates of V. dahliae collected in Xinjiang, indicating that the V. dahliae pathogen from Xinjiang is a nondefoliating pathotype. To verify the causal role of the isolated fungus, pathogenicity assays were conducted on 1-year-old seedlings of the Centennial seedless cultivar. Trimmed roots were submerged in a conidial suspension (1 × 106 conidia/ml) for 30 min and sterile tap water was used as a control. The seedlings were transplanted into a pot containing 2:1 sterile mixture of peat/perlite (vol/vol). Plants were grown in a greenhouse at 25°C. Six Verticillium isolates were found to cause the same symptoms as in fields 50 days after inoculation. V. dahliae was successfully reisolated from the stems of inoculated plants. Control seedlings inoculated in sterile tap water remained healthy. Because grapevine (Vitis vinifera) is an economically important crop for fruit and winemaking material in Xinjiang, Verticillium wilt poses a threat. The disease has been previously reported in the United States (2), but to our knowledge, this is the first report from China. References: (1) E. Pérez Artés et al. Eur. J. Plant Pathol. 106:507, 2000. (2) W. C. Schnathorst and A. C. Goheen. Plant Dis. Rep. 61:909, 1977. (3) H. C. Smith. N. Z. J. Agric. Res. 8:450, 1965. (4) T. J. White et al. PCR Protocols. Academic Press, San Diego, CA, 1990.


Plant Disease ◽  
2010 ◽  
Vol 94 (1) ◽  
pp. 129-129
Author(s):  
A. Garibaldi ◽  
D. Bertetti ◽  
P. Pensa ◽  
M. L. Gullino

Lampranthus spp. N.B. Brown (figmarigold) belongs to the Aizoaceae family and is grown as a ground cover in gardens or as a potted plant. In January 2009, severe outbreaks of a previously unknown wilt were observed at a commercial farm in Liguria (northern Italy) where 7-month-old potted plants were grown outdoors in a mix of peat/clay/pumice at pH 6.5. In cultivars with pink flowers, 12% of plants were affected, while only a few cultivars with red flowers were diseased. Initial symptoms were yellowing of external leaves and brown or black streaks in the vascular tissue of roots, crown, and leaves. Subsequently, infected tissues wilted and stopped growing, stems and leaves appeared desiccated, and infected plants died. Stems of 10 pink-flowered plants were severed with a knife, cut ends sealed with wax, and surfaces disinfected with 1% sodium hypochlorite. Cross-sections (1 mm long) through symptomatic vascular tissue were plated onto potato dextrose agar. After 10 days at 22°C, 90% of the stems tested positive for Verticillium. Irregular, dark microsclerotia, 22 to 128 × 13 to 66 (average 51 × 29) μm, developed in hyaline hyphae after 10 days of growth at 22 ± 1°C (12-h photoperiod). Hyaline, elliptical, single-celled conidia, 2.9 to 4.8 × 1.3 to 2.4 (average 4.1 × 1.7) μm, developed on verticillate conidiophores. On the basis of these morphological characteristics, the fungus was identified as V. dahliae (3). The internal transcribed spacer (ITS) region of rDNA was amplified using primers ITS4/ITS6 (2) and sequenced. BLASTn analysis (1) of the 476-bp segment showed a 100% homology with the sequence of V. dahliae. The nucleotide sequence has been assigned GenBank Accession No. GQ 149479. Pathogenicity tests were performed twice using five 40-day-old plants of a pink-flower cultivar of a Lampranthus sp. grown in 1-liter pots containing a 50:20:20:10 mix of peat moss/pumice/pine bark cortex/clay. The substrate was infested with a conidial suspension (1.0 × 107/ml) of one isolate of V. dahliae recovered from infected plants. Inoculum (50 ml) were added to each pot, drenching the top of the soil. Noninoculated plants served as controls. Plants (five per treatment) were maintained in a glasshouse at daily average temperatures between 20 and 26°C and at 50 to 70% relative humidity. The first wilt symptoms and a vascular discoloration in the roots, crown, and veins developed 30 days after inoculation. V. dahliae was consistently reisolated. Noninoculated plants remained healthy. In a second test, the susceptibility of purple-, white-, yellow-, red-, and orange-flowered cultivars was tested. Ten rooted cuttings of each cultivar were inoculated as described above. The severity of Verticillium wilt was evaluated and each cultivar was classified as resistant, partially resistant, average susceptible, susceptible, or highly susceptible. All tested cultivars were susceptible or highly susceptible to Verticillium. Only the purple cultivar showed an average susceptibility. To our knowledge, this is the first report of Verticillium wilt on Lampranthus spp. in Italy as well as worldwide. Today, the economic importance of Verticillium wilt on figmarigold in Italy is still limited. References: (1) S. F. Altschul et al. Nucleic Acids Res. 25:3389, 1997. (2) M. A. Innis et al. Page 315 in: PCR Protocols: A Guide to Methods and Applications. Academic Press, San Diego, CA, 1990. (3) G. F. Pegg and B. L. Brady. Verticillium Wilts. CABI Publishing, Wallingford, UK, 2002.


Plant Disease ◽  
2011 ◽  
Vol 95 (3) ◽  
pp. 361-361 ◽  
Author(s):  
C. L. Blomquist ◽  
S. Rooney-Latham ◽  
J. L. Haynes ◽  
H. J. Scheck

Cosmos (Cosmos bipinnatus Cav.) is an annual that is grown for cut flowers or as a landscape bedding plant. In late July 2009, cosmos plants were collected from a 0.4-ha field in Santa Barbara County, CA and submitted to the California Department of Food and Agriculture's Plant Pest Diagnostics Laboratory. Plants showed symptoms of chlorosis, wilting, necrosis, and death. Symptomatic plants comprised approximately 50% of the crop. Roots and stems appeared entirely discolored. Pieces (4 mm3) were taken from the edges of the discolored tissue of roots and stems, surface sterilized in 0.6% NaOCl for 2 min, and placed onto one-half-strength acidified potato dextrose agar (APDA). Fungal colonies consisted of fine, hyaline hyphae with verticillate conidiophores producing hyaline conidia, measuring 4.2 to 7.0 × 1.8 to 3.0 μm (5.13 × 2.44 μm average), in slimy masses. Microsclerotia (30.0 to 137.5 × 15.0 to 60.0 μm, 57.6 × 33.7 μm average) formed after 1 week in culture, causing the center of the colony to darken. Morphological characteristics were consistent with those of Verticillium dahliae (2). The internal transcribed spacer region (ITS) of rDNA was amplified for one isolate from cosmos using ITS1 and ITS4 primers as described by White et al. (3), and the amplicon was sequenced (GenBank Accession No. GU99602). BLAST analysis of the 455-bp amplicon showed 100% identity with the ITS sequence of V. dahliae from cosmos in Italy (GenBank Accession No. GQ130129). Pathogenicity of the California cosmos isolate of V. dahliae was determined by inoculating 10 1-month-old seedlings (each approximately 20 cm high) of C. bipinnatus ‘Sensation Mix’ with this isolate. Plants were inoculated with spores harvested by flooding 2-week-old cultures of V. dahliae grown on APDA medium with sterile distilled water. Plant root tips were trimmed and submerged in a spore suspension (1.3 × 106 spores/ml) for 5 min. Ten plants were dipped in water as the negative control treatment. Plants were then planted in a commercial potting mix in 10-cm-diameter pots and kept in a growth chamber at 25°C with a 12-h photoperiod. Inoculated plants were chlorotic and wilted when root and stem isolations were performed 1 month after inoculation. V. dahliae grew from stems and roots of 7 and 2 of the 10 inoculated plants, respectively. The inoculation experiment was repeated on six 5-month-old plants with similar results, except V. dahliae was isolated from the roots and stems of six and five plants, respectively. No symptoms developed on plants dipped in water, and Verticillium spp. did not grow from isolated root or stem pieces from the noninoculated plants in either experiment. On the basis of morphological and ITS sequence information, the fungus was identified as V. dahliae. V. dahliae is an economically important pathogen with a wide host range worldwide including cosmos in Italy (1). The affected field in California had a history of vegetable and flower seed crops, as well as vegetables for consumption. Infection of cosmos may have been from soilborne microsclerotia from previous susceptible crops. To our knowledge, this is the first report of Verticillium wilt on cosmos in California. References: (1) A. Carlucci et al. Plant Dis. 93:846, 2009. (2) D. L. Hawksworth and P. W. Talboys. No. 256 in: Descriptions of Pathogenic Fungi and Bacteria. CMI, Kew, Surrey, UK, 1970. (3) T. J. White et al. PCR Protocols: A Guide to Methods and Applications. M. A. Innis et al., eds. Academic Press, San Diego, 1990.


Plant Disease ◽  
2010 ◽  
Vol 94 (3) ◽  
pp. 382-382
Author(s):  
J. Moral ◽  
F. J. López-Escudero ◽  
L. F. Roca ◽  
M. A. Blanco-López ◽  
A. Trapero

Pistachio (Pistacia vera L.) trees in the Castilla La Mancha and Andalusia regions of central and southern Spain are grown close to olive orchards, which are often severely affected by Verticillium dahliae. During the last decade, wilt and death of one or several branches have been observed on pistachio (cv. Kerman) scions grafted on rootstock (P. terebinthus). Discoloration of vascular tissue was occasionally observed. In five surveyed orchards, incidence of affected trees was less than 2%. Wood chips with the bark removed from symptomatic trees were washed in running tap water, surface disinfested in 0.5% sodium hypochlorite for 1 min, and placed onto potato dextrose agar plates incubated at 25°C in the dark. Isolates were identified as V. dahliae on the basis of the characteristics of microsclerotia, conidiophores, and conidia. V. dahliae isolate V117 from olive was used as reference (1). The fungus was also isolated from soil in pistachio orchards using wet sieving and a modified sodium polypectate agar medium (1). Inoculum density varied from 0 to 4.73 microsclerotia per gram of soil. P. terebinthus seedlings were inoculated with two isolates of V. dahliae from pistachio trees by injecting the stems with 50 μl of a conidial suspension (107 conidia per ml) (2). Wilt symptoms of varying severity developed in 12 and 15 seedlings of the 20 pistachio seedlings inoculated with each of two isolates. No symptoms developed on the control seedlings. The pathogen was recovered from stem tissues of inoculated plants. To our knowledge, this is the first report of Verticillium wilt of pistachio in Spain. This study demonstrates the susceptibility of certain rootstocks to V. dahliae and the importance of using resistant rootstocks, such as UCBI (2), in pistachio plantations established on soils infested by V. dahliae. References: (1) F. J. López-Escudero and M. A. Blanco-López. Plant Dis. 91:1372, 2007. (2) D. P. Morgan et al. Plant Dis. 76:310, 1992.


Plant Disease ◽  
2021 ◽  
Author(s):  
Md Aktaruzzaman ◽  
Tania Afroz ◽  
Hyo-Won Choi ◽  
Byung Sup Kim

Perilla (Perilla frutescens var. japonica), a member of the family Labiatae, is an annual herbaceous plant native to Asia. Its fresh leaves are directly consumed and its seeds are used for cooking oil. In July 2018, leaf spots symptoms were observed in an experimental field at Gangneung-Wonju National University, Gangneung, Gangwon province, Korea. Approximately 30% of the perilla plants growing in an area of about 0.1 ha were affected. Small, circular to oval, necrotic spots with yellow borders were scattered across upper leaves. Masses of white spores were observed on the leaf underside. Ten small pieces of tissue were removed from the lesion margins of the lesions, surface disinfected with NaOCl (1% v/v) for 30 s, and then rinsed three times with distilled water for 60 s. The tissue pieces were then placed on potato dextrose agar (PDA) and incubated at 25°C for 7 days. Five single spore isolates were obtained and cultured on PDA. The fungus was slow-growing and produced 30-50 mm diameter, whitish colonies on PDA when incubated at 25ºC for 15 days. Conidia (n= 50) ranged from 5.5 to 21.3 × 3.5 to 5.8 μm, were catenate, in simple or branched chains, ellipsoid-ovoid, fusiform, and old conidia sometimes had 1 to 3 conspicuous hila. Conidiophores (n= 10) were 21.3 to 125.8 × 1.3 to 3.6 μm in size, unbranched, straight or flexuous, and hyaline. The morphological characteristics of five isolates were similar. Morphological characteristics were consistent with those described for Ramularia coleosporii (Braun, 1998). Two representative isolates (PLS 001 & PLS003) were deposited in the Korean Agricultural Culture Collection (KACC48670 & KACC 48671). For molecular identification, a multi-locus sequence analysis was conducted. The internal transcribed spacer (ITS) regions of the rDNA, partial actin (ACT) gene and glyceraldehyde-3-phosphate dehydrogenase (GAPDH) gene were amplified using primer sets ITS1/4, ACT-512F/ACT-783R and gpd1/gpd2, respectively (Videira et al. 2016). Sequences obtained from each of the three loci for isolate PLS001 and PLS003 were deposited in GenBank with accession numbers MH974744, MW470869 (ITS); MW470867, MW470870 (ACT); and MW470868, MW470871 (GAPDH), respectively. Sequences for all three genes exhibited 100% identity with R. coleosporii, GenBank accession nos. GU214692 (ITS), KX287643 (ACT), and 288200 (GAPDH) for both isolates. A multi-locus phylogenetic tree, constructed by the neighbor-joining method with closely related reference sequences downloaded from the GenBank database and these two isolates demonstrated alignment with R. coleosporii. To confirm pathogenicity, 150 mL of a conidial suspension (2 × 105 spores per mL) was sprayed on five, 45 days old perilla plants. An additional five plants, to serve as controls, were sprayed with sterile water. All plants were placed in a humidity chamber (>90% relative humidity) at 25°C for 48 h after inoculation and then placed in a greenhouse at 22/28°C (night/day). After 15 days leaf spot symptoms, similar to the original symptoms, developed on the leaves of the inoculated plants, whereas the control plants remained symptomless. The pathogenicity test was repeated twice with similar results. A fungus was re-isolated from the leaf lesions on the inoculated plants which exhibited the same morphological characteristics as the original isolates, fulfilling Koch’s postulates. R. coleosporii has been reported as a hyperparasite on the rust fungus Coleosporium plumeriae in India & Thailand and also as a pathogen infecting leaves of Campanula rapunculoides in Armenia, Clematis gouriana in Taiwan, Ipomoea batatas in Puerto Rico, and Perilla frutescens var. acuta in China (Baiswar et al. 2015; Farr and Rossman 2021). To the best of our knowledge, this is the first report of R. coleosporii causing leaf spot on P. frutescens var. japonica in Korea. This disease poses a threat to production and management strategies to minimize leaf spot should be developed.


Plant Disease ◽  
2021 ◽  
Author(s):  
Jun Guo ◽  
Jin Chen ◽  
Zhao Hu ◽  
Jie Zhong ◽  
Jun Zi Zhu

Cardamine hupingshanensis is a selenium (Se) and cadmium (Cd) hyperaccumulator plant distributed in wetlands along the Wuling Mountains of China (Zhou et al. 2018). In March of 2020, a disease with symptoms similar to gray mold was observed on leaves of C. hupingshanensis in a nursery located in Changsha, Hunan Province, China. Almost 40% of the C. hupingshanensis (200 plants) were infected. Initially, small spots were scattered across the leaf surface or margin. As disease progressed, small spots enlarged to dark brown lesions, with green-gray, conidia containing mold layer under humid conditions. Small leaf pieces were cut from the lesion margins and were sterilized with 70% ethanol for 10 s, 2% NaOCl for 2 min, rinsed with sterilized distilled water for three times, and then placed on potato dextrose agar (PDA) medium at 22°C in the dark. Seven similar colonies were consistently isolated from seven samples and further purified by single-spore isolation. Strains cultured on PDA were initially white, forming gray-white aerial mycelia, then turned gray and produced sclerotia after incubation for 2 weeks, which were brown to blackish, irregular, 0.8 to 3.0 × 1.2 to 3.5 mm (n=50). Conidia were unicellular, globose or oval, colourless, 7.5 to 12.0 × 5.5 to 8.3 μm (n=50). Conidiophores arose singly or in group, straight or flexuous, septate, brownish to light brown, with enlarged basal cells, 12.5 to 22.1 × 120.7 to 310.3 μm. Based on their morphological characteristics in culture, the isolates were putatively identified as Botrytis cinerea (Ellis 1971). Genomic DNA of four representative isolates, HNSMJ-1 to HNSMJ-4, were extracted by CTAB method. The internal transcribed spacer region (ITS), glyceraldehyde-3-phosphate dehydrogenase gene (G3PDH), heat-shock protein 60 gene (HSP60), ATP-dependent RNA helicaseDBP7 gene (MS547) and DNA-dependent RNA polymerase subunit II gene (RPB2) were amplified and sequenced using the primers described previously (Aktaruzzaman et al. 2018) (MW820311, MW831620, MW831628, MW831623 and MW831629 for HNSMJ-1; MW314722, MW316616, MW316617, MW316618 and MW316619 for HNSMJ-2; MW820519, MW831621, MW831627, MW831624 and MW831631 for HNSMJ-3; MW820601, MW831622, MW831626, MW831625 and MW831630 for HNSMJ-4). BLAST searches showed 99.43 to 99.90% identity to the corresponding sequences of B. cinerea strains, such as HJ-5 (MF426032.1, MN448500.1, MK791187.1, MH727700.1 and KX867998.1). A combined phylogenetic tree using the ITS, G3PDH, HSP60 and RPB2 sequences was constructed by neighbor-joining method in MEGA 6. It revealed that HNSMJ-1 to HNSMJ-4 clustered in the B. cinerea clade. Pathogenicity tests were performed on healthy pot-grown C. hupingshanensis plants. Leaves were surface-sterilized and sprayed with conidial suspension (106 conidia/ mL), with sterile water served as controls. All plants were kept in growth chamber with 85% humidity at 25℃ following a 16 h day-8 h night cycle. The experiment was repeated twice, with each three replications. After 4 to 7 days, symptoms similar to those observed in the field developed on the inoculated leaves, whereas controls remained healthy. The pathogen was reisolated from symptomatic tissues and identified using molecular methods, confirming Koch’s postulates. B. cinerea has already been reported from China on C. lyrate (Zhang 2006), a different species of C. hupingshanensis. To the best of our knowledge, this is the first report of B. cinerea causing gray mold on C. hupingshanensis in China and worldwide. Based on the widespread damage in the nursery, appropriate control strategies should be adopted. This study provides a basis for studying the epidemic and management of the disease.


Sign in / Sign up

Export Citation Format

Share Document