scholarly journals First Record and Complete Nucleotide Sequence of Alfalfa mosaic virus from Lavandula stoechas in Italy

Plant Disease ◽  
2010 ◽  
Vol 94 (7) ◽  
pp. 924-924 ◽  
Author(s):  
G. Parrella ◽  
N. Acanfora ◽  
M. G. Bellardi

During spring 2009, lavender plants (Lavandula stoechas L.) showing a bright yellow mosaic of calico type and light stunting were observed in a commercial nursery in Liguria Province in northern Italy. Of 300 plants inspected, ~2% were symptomatic. Preliminary observations of leaf sap with the transmission electron microscope revealed bacilliform virus-like particles in three symptomatic plants, whereas no virus-like particles were observed in asymptomatic plants. The same symptomatic plants were tested by double-antibody sandwich-ELISA with polyclonal antisera against Cucumber mosaic virus, Potato virus Y, Tobacco mosaic virus, and Alfalfa mosaic virus (AMV). All three plants reacted positively against AMV antibodies, but not the other antibodies. A crude sap extract obtained from a single symptomatic plant, hereafter referred to as the Lst isolate, was prepared by macerating 1 g of fresh leaves in 4 ml of sodium phosphate 0.03 M, containing 0.2% sodium diethyldithiocarbamate, 75 mg/ml of active charcoal, and traces of Carborundum (600 mesh). Sap extract was mechanically inoculated onto a set of herbaceous hosts. Inoculated plants were maintained in an insect-proof greenhouse with natural illumination and temperatures of 24 and 18°C day/night. Under these conditions, plants showed the following symptoms after 1 to 3 weeks: necrotic local lesions in bean (Phaseolus vulgaris L., cv. Borlotto) and cowpea (Vigna unguiculata L., cv. Black eye); necrotic local lesions followed by systemic necrosis in broad bean (Vicia faba L., cv. Super Simonia) and tomato (Solanum lycopersicum L., cv. San Marzano); and bright yellow mosaic (calico type) in basil (Ocimum basilicum L., cv. Gigante). To sequence the entire genome of the Lst isolate, total RNA was extracted from infected samples with the RNeasy Plant Mini Kit (Qiagen, Valencia, CA) and subjected to AMV-specific reverse transcription-PCR by using four primer pairs for each genomic RNA of overlapping oligonucleotides according to the complete genome sequence of AMV 425L isolate (GenBank No. L00163 for RNA1, X01572 for RNA2, and K03542 for RNA3). The 5′- and 3′-terminals regions of each RNA were amplified with the strategy described by Lozano et al. (1) and specific AMV oligonucleotides designed for the corresponding viral RNA. The complete genome of the AMV-Lst isolate comprised 3,643 nucleotides for RNA1 (No. FN667965), 2,593 nucleotides for RNA2 (No. FN667966), and 2,038 nucleotides for RNA3 (No. FN667967). Comparative sequence analyses revealed that the AMV-Lst isolate from Italy shared overall nucleotide sequence identities with the AMV isolate 425L of 97.1, 95.5, and 94.7% for RNA1, 2, and 3, respectively. P1 and P2 replicase genes and the movement protein and coat protein (CP) genes of AMV-Lst isolate showed, respectively, 97.2, 95.1, 96.2, and 97.8% identity with those from the 425L isolate. The AMV-Lst CP gene was shorter by nine nucleotides compared with the CP gene of 425L. A phylogenetic tree, obtained with neighbor-joining and maximum likelihood methods, showed that the Lst isolate grouped within subgroup I of AMV isolates confirmed that the differences between subgroups I and II correlate mainly with the geographic origin of isolates (2). Lst represents the first Italian isolate of AMV completely sequenced, and to our knowledge, this is the first report of this virus in L. stoechas. References: (1) G. Lozano et al. Arch. Virol. 151:581, 2006. (2) G. Parrella et al. Arch. Virol. 145:2659, 2000.

Plant Disease ◽  
2013 ◽  
Vol 97 (10) ◽  
pp. 1387-1387 ◽  
Author(s):  
G. Parrella ◽  
B. Greco ◽  
G. Cennamo ◽  
R. Griffo ◽  
A. Stinca

Araujia sericifera Brot. (Fam. Apocynaceae) is an evergreen climbing plant native of South America, originally introduced in Europe as an ornamental. In spring 2012, virus-like symptoms including bright yellow mosaic of calico-type and leaf distortion were observed in three A. sericifera plants growing in an abandoned field located in Pomigliano d'Arco (Campania region, Italy). Leaves from the three plants were collected and examined using commercial antisera (Bioreba AG, Reinach, Switzerland) by double antibody sandwich (DAS)-ELISA against Cucumber mosaic virus (CMV), Alfalfa mosaic virus (AMV), and by indirect plate trapped antigen (PTA)-ELISA against potyviruses (Potygroup test). Only AMV was detected serologically in the three A. sericifera samples. The virus was mechanically transmitted from the ELISA-positive samples to four plants each of Chenopodium quinoa, C. amaranticolor, tobacco (Nicotiana tabacum cv. Xanthi nc), cowpea (Vigna unguiculata, cv. Black eyes), basil (Ocimum basilicum, cv. Gigante), and tomato (Solanum lycopersicum cv. San Marzano), using chilled 0.03 M sodium phosphate buffer, containing 0.2% sodium diethyldithiocarbamate, 75 mg/ml of active charcoal, and traces of Carborundum (600 mesh). Inoculated plants were kept in an insect-proof greenhouse with natural illumination and temperatures of 24 and 18°C day/night. Under these conditions, plants showed the following symptoms after 1 to 3 weeks, consistent with symptoms caused by AMV (1): chlorotic local lesions following by mosaic in C. quinoa and C. amaranticolor, reddish local lesions following by mosaic in cowpea, necrotic local lesions followed by systemic necrosis in tomato, bright yellow mosaic (calico type) in basil, and mosaic and strong deformation of the apical leaves in tobacco. The presence of AMV in ELISA-positive A. sericifera and host plants was further confirmed by conventional reverse transcription (RT)-PCR. Total RNAs were extracted with an RNeasy Plant Mini Kit (Qiagen, Hilden, Germany). RT-PCR was performed with the One-Step RT-PCR Kit (Qiagen) using primers for the coat protein gene (CP) previously used for the molecular characterization of AMV isolates (2). An Italian isolate of AMV from Lavandula stoechas (GenBank Accession No. FN667967) and RNA extracted from a healthy A. sericifera plant were used as positive and negative controls, respectively. An amplicon of the correct predicted size (∼750 bp) was obtained from each of the infected plants assayed, and that derived from A. sericifera isolate Ars2 was purified (QIAqick PCR Purification Kit, Qiagen), cloned in pGEMT easy vector (Promega, Fitchburg, WI) and sequenced (HF570950). Sequence analysis of the CP gene, conducted with MEGA5 software, revealed the highest nucleotide identity of 98% (99% amino acid identity) with the AMV isolate Tef-1 (FR854391), an isolate belonging to subgroup I (3). To our knowledge, this is the first report of AMV infecting A. sericifera in Italy. Since A. sericifera is considered an invasive plant, in continuous expansion to new areas in Italy and in other European countries, particular attention should be paid to the possibility that this species may play a role in the epidemiology of aphid-transmitted viruses such as AMV and CMV, representing a threat to susceptible crops growing nearby. References: (1) G. Marchoux et al. Page 163 in: Virus des Solanacées. Quae éditions, Versailles, 2008. (2) G. Parrella et al. Arch. Virol. 145:2659, 2000. (3) G. Parrella et al. Plant Dis. 96:249, 2012.


Plant Disease ◽  
2012 ◽  
Vol 96 (3) ◽  
pp. 462-462 ◽  
Author(s):  
G. Parrella ◽  
E. Fiallo-Olivé ◽  
J. Navas-Castillo

China rose (Hibiscus rosa-sinensis L.) is an ornamental plant grown throughout the tropics and subtropics. In June 2011, a China rose plant (sample CV-1) showing bright yellow “aucuba”-type mosaic, mainly at the center of the leaves, was found in a public garden in Caleta de Vélez (Málaga Province, southern Spain). Electron microscope examination of negatively stained preparations from the symptomatic plant revealed the presence of semispherical to bacilliform virus-like particles of 30 to 56 × 16 nm. Sap extracts also reacted positively in double-antibody sandwich (DAS)-ELISA to antiserum against Alfalfa mosaic virus (AMV) (Bioreba AG, Reinach, Switzerland). RNA of this sample was extracted with the RNeasy Kit (Qiagen, Valencia, CA) and tested by reverse-transcription (RT)-PCR with AMV specific primers (2), using AMV and GoTaq Master Mixes (Promega, Madison, WI) for cDNA synthesis and amplification, respectively. After cloning and sequencing, the ~750-bp DNA fragment was confirmed as the coat protein (CP) gene of AMV (GenBank Accession No. HE591387) with the highest nucleotide identity of 96% to AMV isolates belonging to subgroup IIA (e.g., GenBank Accession No. AJ130707). Sap from affected leaves of sample CV-1 was mechanically inoculated onto herbaceous indicator plants (Chenopodium amaranticolor, C. quinoa, and Ocimum basilicum). Both Chenopodium species developed chlorotic local lesions followed by mosaic within 3 days after inoculation, and O. basilicum showed bright yellow mosaic of calico type 2 weeks postinoculation. These symptoms are consistent with those reported for AMV in these hosts (1). Virus infection in the inoculated plants was confirmed by DAS-ELISA and RT-PCR. To gain insight on the prevalence and genetic variability of AMV in China rose, a survey was carried out in nearby locations in the provinces of Málaga (14 samples from Torre del Mar and 5 samples from Rincón de la Victoria) and Granada (12 samples from La Herradura). Leaf samples were analyzed by tissue blot hybridization with an AMV-specific digoxigenin-labeled RNA probe obtained from the RNA 1 of the Spanish isolate Tec1 (3), and only two samples from Torre del Mar tested positive. One of these samples (TM-2) was used to amplify by RT-PCR the AMV CP gene that was cloned and sequenced (GenBank Accession No. HE591386). The highest nucleotide identity of the TM-2 CP gene (98%) was with the subgroup IIB Spanish isolate Tec1, whereas identity with the CV-1 isolate was 95%. Nevertheless, phylogenetic analysis (neighbor-joining method) showed that both CV-1 and TM-2 isolates belong to the recently proposed AMV subgroup IIB (3), which includes the Tec1 isolate and two other isolates from ornamental plants, Phlox paniculata from the United States (GenBank Accession No. DQ124429) and Viburnum lucidum from Spain (GenBank Accession No. EF427449). These results show that AMV subgroup IIB is emerging as a complex cluster of virus isolates that currently are reported to infect only ornamentals. To our knowledge, this is the first report of AMV naturally occurring in China rose. References: (1) G. Marchoux et al. Page 163 in: Virus des Solanacées. Quae éditions, Versailles, 2008. (2) G. Parrella et al. Arch. Virol. 145:2659, 2000. (3) G. Parrella et al. Arch. Virol. 156:1049, 2011.


2006 ◽  
Vol 96 (11) ◽  
pp. 1237-1242 ◽  
Author(s):  
H. Xu ◽  
J. Nie

Alfalfa mosaic virus (AMV) was detected in potato fields in several provinces in Canada and characterized by bioassay, enzyme-linked immunosorbent assay, and reverse-transcription polymerase chain reaction (RT-PCR). The identity of eight Canadian potato AMV isolates was confirmed by sequence analysis of their coat protein (CP) gene. Sequence and phylogenetic analysis indicated that these eight AMV potato isolates fell into one strain group, whereas a slight difference between Ca175 and the other Canadian AMV isolates was revealed. The Canadian AMV isolates, except Ca175, clustered together among other strains based on alignment of the CP gene sequence. To detect the virus, a pair of primers, AMV-F and AMV-R, specific to the AMV CP gene, was designed based on the nucleotide sequence alignment of known AMV strains. Evaluations showed that RT-PCR using this primer set was specific and sensitive for detecting AMV in potato leaf and tuber samples. AMV RNAs were easily detected in composite samples of 400 to 800 potato leaves or 200 to 400 tubers. Restriction analysis of PCR amplicons with SacI was a simple method for the confirmation of PCR tests. Thus, RT-PCR followed by restriction fragment length polymorphism analysis may be a useful approach for screening potato samples on a large scale for the presence of AMV.


Plant Disease ◽  
2003 ◽  
Vol 87 (11) ◽  
pp. 1372-1375 ◽  
Author(s):  
Yul-Ho Kim ◽  
Ok-Sun Kim ◽  
Bong-Choon Lee ◽  
Jung-Kyung Moon ◽  
Sang-Chul Lee ◽  
...  

A new Soybean mosaic virus (SMV) strain was isolated in Korea and designated as G7H. Its virulence on eight differentials and 42 Korean soybean cultivars was compared with existing SMV strains. G7H caused the same symptoms as G7 did on the eight differential cultivars. However, it caused different symptoms on the G7-immune Korean soybean cultivars; G7H caused necrosis in Suwon 97 (Hwangkeumkong) and Suwon 181 (Daewonkong), and a mosaic symptom in Miryang 41 (Duyoukong), while G7 caused only local lesions on those varieties. The nucleotide sequence of the cylindrical inclusion region of G7H was determined and compared with other SMV strains. G7H shared 96.3 and 91.3% nucleotide similarities with G2 and G7, respectively; whereas G7 shared 95.6% nucleotide similarity with G5H.


Plant Disease ◽  
2007 ◽  
Vol 91 (9) ◽  
pp. 1204-1204 ◽  
Author(s):  
S. Adkins ◽  
G. McAvoy ◽  
E. N. Rosskopf

Red soda apple (Solanum capsicoides All.), a member of the Solanaceae, is a weed originally from Brazil (3). It is a perennial in southern Florida and is characterized by abundant prickles on stems, petioles, and leaves. Prickles on stems are more dense than those on its larger, noxious weed relative, tropical soda apple (Solanum viarum Dunal), and the mature red soda apple fruits are bright red in contrast to the yellow fruits of tropical soda apple (2). Virus-like foliar symptoms of light and dark green mosaic were observed on the leaves of a red soda apple in a Lee County cow pasture during a tropical soda apple survey during the fall of 2004. The appearance of necrotic local lesions following inoculation of Nicotiana tabacum cv. Xanthi nc with sap from the symptomatic red soda apple leaves suggested the presence of a tobamovirus. Tropical soda apple mosaic virus (TSAMV), a recently described tobamovirus isolated from tropical soda apple in Florida, was specifically identified by a double-antibody sandwich-ELISA (1). An additional six similarly symptomatic red soda apple plants were later collected in the Devils Garden area of Hendry County. Inoculation of N. tabacum cv. Xanthi nc with sap from each of these symptomatic plants also resulted in necrotic local lesions. Sequence analysis of the TSAMV coat protein (CP) gene amplified from total RNA by reverse transcription (RT)-PCR with a mixture of upstream (SolA5′CPv = 5′-GAACTTWCAGAAGMAGTYGTTGATGAGTT-3′; SolB5′CPv = 5′-GAACTCACTGARRMRGTTGTTGAKGAGTT-3′) and downstream (SolA3′CPvc = 5′-CCCTTCGATTTAAGTGGAGGGAAAAAC-3′; SolB3′CPvc = 5′-CGTTTMKATTYAAGTGGASGRAHAAMCACT-3′) degenerate primers flanking the CP gene of Solanaceae-infecting tobamoviruses confirmed the presence of TSAMV in all plants from both locations. Nucleotide and deduced amino acid sequences of the 483-bp CP gene were both 98 to 99% identical to the original TSAMV CP gene sequences in GenBank (Accession No. AY956381). TSAMV was previously identified in tropical soda apple in these two locations in Lee and Hendry counties and three other areas in Florida (1). Sequence analysis of the RT-PCR products also revealed the presence of Tomato mosaic virus in the plant from Lee County. To our knowledge, this represents the first report of natural TSAMV infection of any host other than tropical soda apple and suggests that TSAMV may be more widely distributed in solanaceous weeds than initially reported. References: (1) S. Adkins et al. Plant Dis. 91:287, 2007. (2) N. Coile. Fla. Dep. Agric. Consum. Serv. Div. Plant Ind. Bot. Circ. 27, 1993. (3) U.S. Dep. Agric., NRCS. The PLANTS Database. National Plant Data Center. Baton Rouge, LA. Published online, 2006.


1986 ◽  
Vol 64 (6) ◽  
pp. 1097-1100 ◽  
Author(s):  
J. C. Tu

A study was conducted on the interaction of Ca2+ with 3-indoleacetic acid (IAA) and kinetin on local lesion formation by alfalfa mosaic virus on bean leaves. Local lesion number was reduced when IAA solutions alone were applied as postinoculation sprays, as compared with water sprays. The reduction was slight at 10−4 and 10−5 M but was large at 10−3 M. Although addition of 0.03 M CaCl2 to 10−4 and 10−5 M IAA sprays reversed the effect of IAA on local lesion formation, addition of the same concentration of calcium to 10−3 M IAA had little effect on local lesion production. Kinetin, except at the 10−4 M concentration, caused no increase in the number of local lesions, as compared with treatment with distilled water. However, with 0.03 M CaCl2 added, the local lesion production at all kinetin concentrations increased significantly over distilled water or 0.03 M CaCl2. The sizes of local lesions on leaves sprayed with 10−3, 10−4, and 10−5 M IAA were reduced by approximately 52, 26, and 10%, respectively, and on leaves sprayed with kinetin by approximately 44, 26, and 24%, respectively. Addition of 0.03 M CaCl2 to IAA and kinetin lessened their effect on the size of local lesions but did not eliminate the effect totally.


2018 ◽  
Vol 73 (11-12) ◽  
pp. 423-438 ◽  
Author(s):  
Engy E. Abdel Aleem ◽  
Radwa M. Taha ◽  
Faiza A. Fattouh

Abstract Solanum tuberosum (potato) is the second most important vegetable crop in Egypt. It is locally consumed, manufactured or supplied for export to Europe and other Arab countries. Potato is subject to infection by a number of plant viruses, which affect its yield and quality. Potato virus Y (PVY), potato leaf roll virus (PLRV), and Alfalfa mosaic virus (AMV) were detected in major potato-growing areas surveyed. Multiplex-RT-PCR assay was used for the detection of these three viruses in one reaction using three specific primer pairs designed to amplify genomic parts of each virus (1594 bp for PLRV, 795 bp for AMV, 801 bp for PVY). All three viruses were detected in a single reaction mixture in naturally infected field-grown potatoes. Multiplex RT-PCR improved sensitivity necessary for the early detection of infection. Incidence of single, double, or triple infection has been recorded in some locations. Full-length sequencing has been performed for an Egyptian FER isolate of PLRV. Through phylogenetic analysis, it was shown to occupy the same clade with isolate JokerMV10 from Germany. Complete nucleotide sequence of an Egyptian FER isolate of AMV and phylogenetic analysis was also performed; we propose that it is a new distinct strain of AMV belonging to a new subgroup IIC. This is the first complete nucleotide sequence of an Egyptian isolate of AMV. Genetic biodiversity of devastating potato viruses necessitates continuous monitoring of new genetic variants of such viruses.


2019 ◽  
Vol 8 (31) ◽  
Author(s):  
S. Maina ◽  
L. Zheng ◽  
W. M. Kinoti ◽  
M. Aftab ◽  
N. Nancarrow ◽  
...  

Here, we report the first nearly complete genome sequence of Alfalfa mosaic virus (AMV) obtained from a symptomatic field pea sample (Aus295) in Australia. Its genome RNA1 and RNA2 segments resembled those of the Argentinian isolate Manfredi, with 99.4% and 96.7% nucleotide (nt) identity, respectively; its RNA3 segment resembled that of Chinese isolate AMV-Gyn, with 99.6% nt identity.


2016 ◽  
Vol 4 (4) ◽  
Author(s):  
Kazusato Ohshima ◽  
Savas Korkmaz ◽  
Shinichiro Mitoma ◽  
Rei Nomiyama ◽  
Yuki Honda

The nearly complete genome sequence of a new species of potyvirus was obtained from the symptomless wild onion ( Allium sp.) in Turkey. This virus has less than 67% nucleotide sequence identities over the polyprotein to other known potyviruses. We propose the name wild onion symptomless virus for this novel potyvirus.


Sign in / Sign up

Export Citation Format

Share Document