scholarly journals An Experimental Host Range for Triticum mosaic virus

Plant Disease ◽  
2010 ◽  
Vol 94 (9) ◽  
pp. 1125-1131 ◽  
Author(s):  
Dallas L. Seifers ◽  
T. J. Martin ◽  
J. P. Fellers

Triticum mosaic virus (TriMV) is a newly discovered virus isolated from wheat (Triticum aestivum). This study was conducted to determine an experimental host range for TriMV and identify species that could serve as differential hosts for isolating TriMV from Wheat streak mosaic virus (WSMV). Plants tested were mechanically inoculated with the 06-123 isolate of TriMV or the Sidney 81 isolate of WSMV. Some plants were analyzed by enzyme-linked immunosorbent assay (ELISA) using antibodies of TriMV and WSMV. Plants infected with TriMV always produced mosaic symptoms and only extracts of symptomatic plants reacted with antibodies of TriMV. Maize is not a host for TriMV but barley, oat, rye, and triticale are hosts of TriMV. Certain barley and triticale accessions are hosts for TriMV but not WSMV. These plants can be used in combination with maize to separate WSMV and TriMV in plants infected by both viruses. We also showed that 8 wild grass species were susceptible to TriMV and 25 were not. All of the grasses susceptible to infection with TriMV have been reported as susceptible to infection with WSMV. Because of their growth habits, these plant species would be less desirable for use as differential hosts than maize, barley, and triticale.

2010 ◽  
Vol 150 (1-2) ◽  
pp. 148-152 ◽  
Author(s):  
Aneisha Collins ◽  
Malik Mujaddad Rehman ◽  
R.V. Chowda-Reddy ◽  
Aiming Wang ◽  
Vincent Fondong ◽  
...  

Virus Genes ◽  
2007 ◽  
Vol 36 (1) ◽  
pp. 231-240 ◽  
Author(s):  
Dirk Stephan ◽  
Mahbuba Siddiqua ◽  
Anh Ta Hoang ◽  
Jill Engelmann ◽  
Stephan Winter ◽  
...  

Author(s):  
Quentin Lamy-Besnier ◽  
Bryan Brancotte ◽  
Hervé Ménager ◽  
Laurent Debarbieux

Abstract Motivation Viruses are ubiquitous in the living world, and their ability to infect more than one host defines their host range. However, information about which virus infects which host, and about which host is infected by which virus, is not readily available. Results We developed a web-based tool called the Viral Host Range database to record, analyze and disseminate experimental host range data for viruses infecting archaea, bacteria and eukaryotes. Availability The ViralHostRangeDB application is available from https://viralhostrangedb.pasteur.cloud. Its source code is freely available from the Gitlab hub of Institut Pasteur (https://gitlab.pasteur.fr/hub/viralhostrangedb).


Plant Disease ◽  
2006 ◽  
Vol 90 (6) ◽  
pp. 833-833 ◽  
Author(s):  
C. A. Baker ◽  
L. Breman ◽  
L. Jones

In the fall of 1998, the Division of Plant Industry (DPI) received vegetative propagations of Scutellaria longifolia (skullcap) with symptoms of foliar mosaic, chlorotic/necrotic ringspots, and wavy line patterns from a nursery in Manatee County. Flexuous particles approximately 500 nm long were found with electron microscopy. The plants tested positive for Papaya mosaic virus (PaMV) in an enzyme-linked immunosorbent assay (ELISA) test with antiserum to PaMV (Agdia, Elkhart, IN). However, in immunodiffusion tests (antiserum from D. Purcifull, University of Florida), this virus gave a reaction of partial identity indicating it was related but not identical to PaMV (1). The original infected plants were kept in a greenhouse. In January 2005, a specimen of Crossandra infundibuliformis (firecracker plant) with mosaic symptoms was submitted to the DPI from a nursery in Alachua County. Inclusions found with light microscopy and particles found with electron microscopy indicated that this plant was infected with a potexvirus. This was confirmed by reverse transcription-polymerase chain reaction (RT-PCR) with primers designed to detect members of the virus family Potexviridae (3). These plants reacted positive to PaMV antiserum in ELISA and gave a reaction of partial identity to PaMV in immunodiffusion. A specimen of Portulaca grandiflora (moss rose) with distorted leaves found at a local retail store was also tested and gave the same results. Leaves from each of the three plant species were rubbed onto a set of indicator plants using Carborundum and potassium phosphate buffer. Total RNA was extracted from symptomatic indicator plants of Nicotiana benthamiana. RT-PCR (3) was performed, and PCR products were sequenced directly. Sequences of approximately 700 bp were obtained for all three plant species and showed 98% identity with each other. BLAST search results showed that these sequences were 93% identical to an Alternanthera mosaic virus (AltMV) sequence at the nucleotide level but only 76% identical to PaMV. The amino acid sequences were 98 and 82% identical to AltMV and PaMV, respectively. The PCR products of the virus from Scutellaria sp. were cloned, resequenced, and the sequence was entered into the GenBank (Accession No. DQ393785). The bioassay results matched those found for AltMV in Australia (2) and the northeastern United States (4), except that the Florida viruses infected Datura stramonium and Digitalis purpurea (foxglove). The virus associated with the symptoms of these three plants appears to be AltMV and not PaMV. AltMV has been found in ornamental plants in Australia, Italy, and the United States (Pennsylvania, Maryland, and now Florida). Since this virus is known to infect several plants asymptomatically and can be easily confused with PaMV serologically, it is likely that the distribution of this virus is much wider than is known at this time. References: (1) L. L. Breman. Plant Pathology Circular No. 396. Fla. Dept. Agric. Consum. Serv. DPI, 1999. (2) A. D. W. Geering and J. E. Thomas. Arch Virol 144:577, 1999. (3) A. Gibbs et al. J Virol Methods 74:67, 1998. (4) J. Hammond et al. Arch Virol. 151:477, 2006.


Virus Genes ◽  
2009 ◽  
Vol 39 (3) ◽  
pp. 387-395 ◽  
Author(s):  
A. M. Collins ◽  
Malik Mujaddad-ur-Rehman ◽  
J. K. Brown ◽  
C. Reddy ◽  
A. Wang ◽  
...  

Plant Disease ◽  
2011 ◽  
Vol 95 (2) ◽  
pp. 183-188 ◽  
Author(s):  
Dallas L. Seifers ◽  
T. J. Martin ◽  
John P. Fellers

Triticum mosaic virus (TriMV) infects wheat (Triticum aestivum) in the Great Plains region of the United States. This study determined the occurrence of TriMV at three locations over 3 years and yield effects of wheat mechanically infected with TriMV. Wheat infection with TriMV, Wheat streak mosaic virus (WSMV), and the High Plains virus (HPV) was verified using enzyme-linked immunosorbent assay. Both wheat singly infected with TriMV and doubly infected with TriMV and WSMV occurred at three, two, and one locations in 2007, 2008, and 2009, respectively. Wheat singly infected with HPV occurred at one and two locations in 2008 and 2009, respectively. Wheat doubly infected with WSMV and HPV occurred at one location in 2008 and 2009. Infection with TriMV declined at two locations each year and, at the third location, it increased the second year and was not detected the third year. WSMV infection increased, except for a decline the third year at one location. In contrast to 3.0% infection of wheat with TriMV and WSMV at one location, 85% of the wheat 1.6 km from that site was infected with TriMV and WSMV in 2009. Infection of wheat with TriMV caused significant yield and volume weight reductions in Danby, RonL, and Jagalene but not KS96HW10-3 wheat.


Sign in / Sign up

Export Citation Format

Share Document