scholarly journals Evidence for the Association of a Bipartite Geminivirus with Tomato Leaf Curl Disease in Pakistan

Plant Disease ◽  
1997 ◽  
Vol 81 (8) ◽  
pp. 958-958 ◽  
Author(s):  
S. Mansoor ◽  
S. H. Khan ◽  
M. Saeed ◽  
A. Bashir ◽  
Y. Zafar ◽  
...  

Tomato leaf curl disease is the most important constraint on tomato production in Pakistan, where it is found throughout the country. The disease, which occurs in high incidence in Punjab and Sindh provinces, causes 30 to 40% yield losses in the spring crop and uneconomically high losses when grown as an autumn crop. The symptoms of the disease include upward or downward leaf curling, vein thickening, and stunting of the plant. The disease is transmitted by Bemisia tabaci whiteflies (non-B, biotype K) and is suspected to be caused by a geminivirus. For the detection of geminivirus, total DNA was extracted from infected plants, fractionated in an agarose gel, transferred to a nylon membrane, and Southern blotted. A full-length clone of DNA-A of cotton leaf curl virus from Pakistan (S. Mansoor, I. Bedford, M. S. Pinner, A. Bashir, R. Briddon, J. Stanley, Y. Zafar, K. A. Malik, and P. G. Markham, unpublished) was labeled with [32P]dCTP by the oligo-labeling method and hybridized at medium stringency. Geminivirus DNA forms that are normally found in infected plants were detected in plants with tomato leaf curl disease but not in healthy plants. To further confirm the presence of a whiteflytransmitted geminivirus, universal primers for dicot-infecting geminiviruses (1) were used in polymerase chain reaction (PCR) and a product of expected size (approximately 2.7 kb) was detected. The 2.7-kb PCR-amplified DNA from diseased tomato plants was labeled with [32P]dCTP and used as probe in Southern hybridization. This probe also detected geminivirus DNA forms at medium stringency. Both monopartite and bipartite geminiviruses transmitted by whiteflies have been reported to cause leaf curl symptoms on tomato from the Eastern hemisphere. Degenerate primers (PBLv2040 and PCRc1), which amplify B component DNA, were used to determine if tomato leaf curl was monopartite or bipartite (2). A product of expected size (0.65 kb) was amplified, suggesting this virus to be bipartite. DNA-B PCR product obtained from diseased tomato plants was hybridized as described above and detected geminivirus DNA forms at medium stringency. Samples of diseased tomato plants were collected from tomato fields throughout Punjab. DNA-A was detected in all 20 samples whereas DNA B was detected in 17 samples when hybridized by dot blot method at medium stringency. Our data show that tomato leaf curl virus from Pakistan is a bipartite geminivirus. This is the first evidence for a bipartite geminivirus in tomato plants from Pakistan. References: (1) R. W. Briddon and P. G. Markham. Mol. Biotechnol. 1:202, 1993. (2) M. R. Rojas et al. Plant Dis. 77:340, 1993.

Plant Disease ◽  
2003 ◽  
Vol 87 (3) ◽  
pp. 313-313 ◽  
Author(s):  
S. Chakraborty ◽  
P. K. Pandey ◽  
M. K. Banerjee ◽  
G. Kalloo ◽  
C. M. Fauquet

In November 2001, a leaf curl disease of tomato, manifested by yellowing of leaf lamina, upward leaf curling, leaf distortion, shrinking of leaf surface, and stunted plant growth was observed in tomato-growing areas in the Varanasi and Mirzapur districts of eastern Uttar Pradesh, India, which caused yield losses up to 100%. The causal agent was infective to tomato cv. Punjab Chuhara by whiteflies and grafting. Inoculated plants developed symptoms observed in naturally infected tomatoes. Viral DNA was isolated from artificially inoculated tomato plants using 1% CTAB (2) followed by a concentration of supercoiled DNA by alkaline denaturation (1). A geminivirus was confirmed by polymerase chain reaction using DNA-A degenerate primers (3), and a 550-bp amplified product was obtained from artificially and naturally infected plants. Full-length viral genomes of DNA-A and DNA-B were cloned in plasmid pUC18 at HindIII and XbaI sites, respectively. Partial tandem dimers of the viral clones were infective to Nicotiana benthamiana and tomato cv. Organ Spring through particle bombardment. Infected N. benthamiana plants exhibited downward and upward leaf curling, big veins, leaf puckering with interveinal chlorosis, and stunting. On tomato, symptoms were the same as those seen on naturally infected plants. Cloned DNA also infected Capsicum annuum cv. California Wonder (upward leaf curling and stunting) and tobacco cv. Xanthi (leaf curling and crinkling) but failed to infect Phaseolus vulgaris, okra, cotton, and N. glutinosa. The Varanasi isolate was sap transmissible (0.1 M potassium phosphate buffer, pH 7.0) from the bombarded plants to N. benthamiana and tomato cv. Organ Spring. DNA-A alone infected N. benthamiana (upward leaf curling and big veins) and tomato cv. Organ Spring (mild leaf curl), but symptoms were delayed and milder. Full-length genome sequencing revealed DNA-A (AY190290) contained 2,757 nt and DNA-B (AY190291) contained 2,688 nt. DNA-A of the Varanasi isolate shares 98.4% identity with a DNA-A sequence (AF449999) obtained from a tomato showing leaf curl symptoms from the same region and 97.1% identity with an isolate from Gujarat (900 km from Varanasi). All three sequences represent isolates of the same species, herein called Tomato leaf curl Gujarat virus, based on the priority of submission of the DNA sequence for the Gujarat region (ToLCGV; AF 413671). All isolates noted were obtained from GenBank. However, except for the DNA-A sequence, no other information is available for these ToLCGV isolates. DNA-A of the ToLCGV-Varanasi isolate shares 66.8% identity with Tomato leaf curl New Delhi virus, severe strain (ToLCNdV-Svr) (U15015), and 84.1% with Tomato leaf curl Karnataka virus (U38239). No DNA-B has been reported for these two ToLCGV isolates, and no infectious clone proving the etiology of the disease has been constructed, except for ToLCGV-Varanasi. DNA-B of ToLCGV-Varanasi shares 79.2% homology with ToLCNdV-Svr and 84.1% with ToLCNdV-Luc (X89653). These results suggest that the isolate from Varanasi belongs to ToLCGV, a previously undescribed geminivirus species causing a devastating tomato leaf curl disease in Gujarat and Uttar Pradesh. References: (1) H. C. Birnboim and J. Doly. Nucleic Acids Res. 7:1513, 1979. (2) K. M. Srivastava et al. J. Virol. Methods 51:297, 1995. (3) S. D. Wyatt and J. K. Brown. Phytopathology 86:1288, 1996.


Plant Disease ◽  
2004 ◽  
Vol 88 (6) ◽  
pp. 681-681 ◽  
Author(s):  
J. M. Lett ◽  
H. Delatte ◽  
F. Naze ◽  
B. Reynaud ◽  
A. L. Abdoul-Karime ◽  
...  

In June 2003, symptoms of stunting and leaf curling resembling symptoms of tomato leaf curl disease, as well as reductions in yields, were observed on tomato plants in the western (Combani and Kahani) and eastern (Dembeni, Kaoueni, and Tsararano) regions of Mayotte, a French island in the Comoros Archipelago located in the northern part of the Mozambique Channel. The whitefly, Bemisia tabaci (Gennadius), was observed colonizing tomato plants and other vegetable crops at low levels. Overall, 13 leaf samples with symptoms were collected from tomato plants among the five regions and tested for the presence of begomoviruses using a polymerase chain reaction (PCR) assay with two sets of degenerate primers designed to amplify two regions of the A component of begomoviruses. Primers MP16 and MP82 amplify an approximately 500-bp fragment located between the intergenic conserved nonanucleotide sequence and the first 200 bp of the coat protein (CP) gene (2). Primers AV494 and AC1048 amplify the approximately 550-bp core region of the CP gene (3). Six leaf samples, one from Combani, three from Dembeni, and two from Kahani, gave a PCR product of the expected size with both sets of primers. No PCR products were obtained with degenerate primers designed for begomovirus DNA B or β. The approximately 500- and 550-bp PCR products from one sample each of Combani (EMBL Accession Nos. AJ620912 and AJ620915, respectively), Dembeni (EMBL Accession Nos. AJ620911 and AJ620914, respectively), and Kahani (EMBL Accession Nos. AJ620913 and AJ620916, respectively) were sequenced. For the 489-bp sequences obtained with the MP16/MP82 primer set, the three isolates had 90 to 95% nucleotide identity (DNAMAN; Lynnon BioSoft, Quebec). The most significant sequence alignments (NCBI and BLAST) were with begomoviruses; 80 to 83% nucleotide identity was obtained with the Tomato yellow leaf curl Morondava virus (TYLCMV) isolates from Madagascar (EMBL Accession Nos. AJ422123 and AJ422124), 80 to 82% nucleotide identity was obtained with the South African cassava mosaic virus (SACMV) isolates (GenBank and EMBL Accession Nos. AF155806 and AJ422132), and 79 to 81% nucleotide identity was obtained with the East African cassava mosaic Malawi virus (EMBL Accession No. AJ006460). For the 522-bp sequences obtained with the AV494/AC1048 primer set, 95 to 97% nucleotide identity was shown between the three isolates. The most significant sequence alignments were also with begomoviruses; TYLCMV isolate Morondava (EMBL Accession No. AJ422125) with 86 to 88% nucleotide identity, Tomato yellow leaf curl virus isolates (GenBank and EMBL Accession Nos. AF105975, AJ489258, AB014346, AF024715, AF071228, and X76319) with 86 to 87% nucleotide identity, and SACMV isolate M12 (EMBL Accession No. AJ422132) with 85 to 86% nucleotide identity. According to the current taxonomic criteria for the provisional classification of a new begomovirus species, nucleotide sequence identity in the core region of the CP <90% (1), the tomato begomovirus from Mayotte is a new species and is provisionally named Tomato leaf curl Mayotte virus. References: (1) J. K. Brown et al. Arch. Virol. 146:1581, 2001. (2) P. Umaharan et al. Phytopathology 88:1262, 1998. (3) S. D. Wyatt and J. K. Brown. Phytopathology 86:1288, 1996.


Author(s):  
Ariptha Shankar

Tomato leaf curl disease (TLCD) is the most common viral disease in the tomato plant. It is caused by begomoviruses, which are viruses that cause plant development to be slowed. Many of the traditional disease management methods are still in use. They are, however, ineffective and out of date. Modern biotechnology is being used to detect illness in tomato plants as early as possible, thus reducing damage to the plants. Through genetic engineering, the spread of viruses may be controlled or prevented entirely. Here reviewed many methods for decreasing or eliminating the viral influence on crop growth through biotechnology and genomics. We also investigated the possibility of genetic engineering to reduce or remove the virus TLCD impact on tomato crop development.


Plant Disease ◽  
2013 ◽  
Vol 97 (11) ◽  
pp. 1396-1402 ◽  
Author(s):  
A. J. Khan ◽  
S. Akhtar ◽  
A. K. Singh ◽  
R. W. Briddon

Tomato leaf curl disease (ToLCD) is a significant constraint for tomato production in the Sultanate of Oman. The disease in the north of the country has previously been shown to be caused by the monopartite begomoviruses (family Geminiviridae) Tomato yellow leaf curl virus and Tomato leaf curl Oman virus. Many tomato plants infected with these two viruses were also found to harbor a symptom enhancing betasatellite. Here an analysis of a virus isolated from tomato exhibiting ToLCD symptoms originating from south and central Oman is reported. Three clones of a monopartite begomovirus were obtained. One of the clones was shown to be infectious to tomato and Nicotiana benthamiana and to induce symptoms typical of ToLCD. Analysis of the cloned sequences show them to correspond to isolates of Tomato leaf curl Sudan virus (ToLCSDV), a virus that occurs in Sudan and Yemen. However, the sequences showed less than 93% nucleotide sequence identity to previously characterized ToLCSDV isolates, indicating that the viruses represent a distinct strain of the species, for which we propose the name “Oman” strain (ToLCSDV-OM). Closer analysis of the sequences showed them to differ from their closest relative, the “Tobacco” strain of ToLCSDV originating from Yemen, in three regions of the genome. This suggests that the divergence of the “Oman” and “Tobacco” strains has occurred due to recombination. Surprisingly, ToLCSDV-OM was not found to be associated with a betasatellite, even though the isolates of the other ToLCSDV strains have been shown to be. The significance of these findings and the possible reasons for the distinct geographic distributions of the tomato-infecting begomoviruses within Oman are discussed.


Plant Disease ◽  
2000 ◽  
Vol 84 (7) ◽  
pp. 809-809 ◽  
Author(s):  
A. M. Idris ◽  
J. K. Brown

Cotton leaf curl disease (CLCuD) was first reported in Sudan in 1931. Disease symptoms in cotton were characterized by vein thickening and leaf curling, and the suspect causal agent was shown to be transmitted by the whitefly Bemisia tabaci (Genn.) among cotton, okra, and several weed species (2). Although begomovirus etiology was suspected based on symptomatology and vector transmission, no evidence was available that confirmed or disputed this hypothesis. During 1994 to 1996, four cotton samples exhibiting typical CLCuD symptoms were collected from different fields in the Gezira region in Central Sudan and examined for presence of begomovirus DNA. Total nucleic acids were isolated from cotton plants and subjected to polymerase chain reaction (PCR) using degenerate primers (pAV 2644 and pAC 1154) to amplify begomovirus coat protein (Cp) gene and its flanking sequences (1). An amplicon of the expected size (1,300 bp) was obtained by PCR from each sample, and their nucleotide (nt) sequences were determined. Virus-specific primers designed around the Cp sequence were used to amplify an apparent full-length DNA component. Amplicons were cloned and their sequences were determined, yielding a begomoviral component of approximately 2,761 nt (AF260241). Despite exhaustive attempts to amplify a putative viral B-component using degenerate primers based on the intergenic region sequence of the putative “A-component,” or sequences that are highly conserved for other begomoviruses, no B component was detected. The four cotton isolates shared 99.9 to 100% nt sequence identity, and the number and arrangement of predicted open reading frames were similar to those known for other monopartite begomoviruses. Phylogenetic analysis of the putative CLCuV genome with other begomoviruses indicated that its closest relative was Althea rosea enation virus (AREV) from Egypt (AF014881) with which it shares 79% sequence identity, indicating that CLCuV is a unique begomovirus species with a probable origin in the Eastern Hemisphere. CLCuV shared 66% identity with its second closest relative, Cotton leaf curl virus-Pakistan (CLCuV-PK) (AJ002448). These data provide the first direct evidence for the association of a monopartite begomovirus with the leaf curl disease of cotton in Gezira, Sudan, that is distinct from all other begomoviral species described to date. Herein, we provisionally designate this unique begomoviral species as Cotton leaf curl virus from Sudan (CLCuV-SD). References: (1) A. M. Idris and J. K. Brown. Phytopathology 88:648, 1998. (2) A. M. Nour and J. J. Nour. Emp. Cott. Gr. Rev. 41:27, 1964.


2009 ◽  
Vol 53 (2) ◽  
pp. 99-104 ◽  
Author(s):  
H. Tamarzizt ◽  
S. Chouchane ◽  
R. Lengliz ◽  
D. Maxwell ◽  
M. Marrakchi ◽  
...  

Plant Disease ◽  
2016 ◽  
Vol 100 (11) ◽  
pp. 2299-2305 ◽  
Author(s):  
Susheel Kumar ◽  
Ashish Srivastava ◽  
Meraj Jaidi ◽  
Puneet Singh Chauhan ◽  
S. K. Raj

Parthenium hysterophorus plants exhibiting severe leaf curl and stunting symptoms were observed near agriculture fields in Lucknow, India. The association of a begomovirus, β-satellite, and α-satellite with these symptoms of a Parthenium disease was investigated by sequence analyses of virus and satellite DNA amplified by rolling circle amplification and polymerase chain reaction. The highest sequence identities and closest phylogenetic relationships for the begomovirus, β-satellite, and α-satellite detected in P. hysterophorus plants were to Tomato leaf curl virus (ToLCV), papaya leaf curl β-satellite (PaLCuB), and Ageratum yellow vein India α-satellite (AYVIA), respectively. These findings identified the virus and satellites infecting the Parthenium sp. as ToLCV, PaLCuB, and AYVIA, respectively. P. hysterophorus and tomato seedlings infected with cloned ToLCV, PaLCuB, and AYVIA by agroinoculation developed leaf curl symptoms, whereas plants infected with ToLCV alone or with ToLCV and AYVIA developed mild yellowing. The results show that this complex infects and causes disease in P. hysterophorus and tomato. P. hysterophorus is an invasive weed commonly found around agricultural fields and along roadsides in India. These results indicate that P. hysterophorus plants infected with ToLCV and associated satellite DNA act as an alternate host (reservoir), and that could lead to increased incidence of tomato leaf curl disease.


2001 ◽  
Vol 4 (5) ◽  
pp. 528-530
Author(s):  
Afia Akhtar . ◽  
M. A. Rahman khokon . ◽  
Bimal Kumar Pramanik . ◽  
M. Ashrafuzzaman .

2017 ◽  
Vol 83 (6) ◽  
pp. 402-405 ◽  
Author(s):  
Muhammad Qasim Aslam ◽  
Khalid P. Akhtar ◽  
Mohy-u-Din Akram ◽  
Muhammad Y. Saleem ◽  
Nighat Sarwar ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document