scholarly journals First Report of Tomato Spotted Wilt Tospovirus Infection of Watermelon in Georgia

Plant Disease ◽  
1998 ◽  
Vol 82 (3) ◽  
pp. 351-351 ◽  
Author(s):  
S. S. Pappu ◽  
H. R. Pappu ◽  
R. D. Gitaitis ◽  
J. D. Gay

In 1996, volunteer watermelon plants in a tobacco field in Coffee County, GA, exhibited foliar symptoms that included necrotic ring spots and veinal necrosis. Watermelon plants from experimental plots of the Coastal Plain Experiment Station in Tifton, GA, similarly showed necrotic lesions, often resulting in necrotic ring spots during the late summer of 1997. Out of 16 samples tested for the presence of tomato spotted wilt tospovirus (TSWV) with a commercially available enzyme-linked immunosorbent assay (ELISA) kit (Agdia, Elkhart, IN), six were positive for TSWV. Primers specific to the nucleocapsid gene of TSWV were used in a reverse transcription-polymerase chain reaction assay (RT-PCR) (1) to verify the presence of TSWV. RT-PCR gave an expected PCR product of approximately 350 bp. The amplicon was cloned in pGEM-T vector and the recombinant clone was sequenced. The sequence of the cloned PCR product confirmed the identity of TSWV, thus verifying TSWV infection of watermelon. The potential impact of TSWV on watermelon crop in Georgia will be investigated. This is the first report of natural infection of watermelon by TSWV in Georgia. Reference: (1) H. R. Pappu et al. Tobacco Sci. 40:74, 1996.

Plant Disease ◽  
2000 ◽  
Vol 84 (10) ◽  
pp. 1155-1155 ◽  
Author(s):  
J. C. Díaz-Pérez ◽  
H. R. Pappu

During the 2000 spring season, tomatillo (Physalis ixocarpa) plants showing chlorotic streaks on leaves were observed in an experimental plot of the University of Georgia's Coastal Plain Experiment Station in Tift County, GA. Leaf samples from 192 plants were collected. These included plants that had chlorotic streaks and those without obvious symptoms. Samples were tested by ELISA using a commercially available Tomato spotted wilt virus (TSWV) detection kit (Agdia Inc., Elkhart, IN). TSWV was found in 10 samples that had chlorotic streaks on leaves, and the remaining plants with no obvious symptoms were negative for TSWV. Infected plants were found in both cultivars, Verde Puebla and Toma Verde. The presence of the virus had no apparent effect on plant size or fruit appearance. TSWV infection of the ELISA-positive samples was further verified by immunocapture reverse transcription-polymerase chain reaction (IC-RT-PCR) (1). The primer pair (5′-ATGTCTAAGGTTAAGCTC-3′ and 5′ TTAAGCAAGTTCTGTGAG-3′) represented the first and last 18 bases of the coding region of the nucleocapsid gene of TSWV, respectively, and produced approximately 800-bp PCR product (1). IC-RT-PCR gave a single DNA band of expected size and no amplification was found in the uninfected control. This is the first report of TSWV on tomatillo in Georgia. Reference: (1) R. K. Jain et al. Plant Dis. 82:900, 1998.


Plant Disease ◽  
2002 ◽  
Vol 86 (12) ◽  
pp. 1402-1402 ◽  
Author(s):  
Juliana Freitas-Astúa ◽  
Lisela Moreira ◽  
Carmen Rivera ◽  
Carlos M. Rodríguez ◽  
Elliot W. Kitajima

Orchid fleck virus (OFV), a tentative member of the family Rhabdoviridae, infects orchids in several countries. The virus is vectored worldwide by the mite Brevipalpus californicus (Banks) (Acari: Tenuipalpidae). Eleven plants of Oncidium spp. and one plant each of the genera Cymbidium and Maxillaria exhibiting numerous yellow flecks and necrotic ringspot lesions on leaves were collected in two private orchid collections in Costa Rica. Presence of OFV was assessed by plate-trapped antigen enzyme-linked immunosorbent assay (PTA-ELISA) using an antiserum developed against an OFV isolate in Japan (2), analyses of ultrathin sections of the host cell with transmission electron microscopy (TEM), and reverse transcription-polymerase chain reaction (RT-PCR) amplification using specific primers for the viral nucleocapsid gene (1). Eight of eleven Oncidium samples, and both Cymbidium and Maxillaria samples tested positive for OFV with PTA-ELISA having A405 values ranging from 3.9 to 14.6 times higher than negative controls. Thin sections from individual samples of Cymbidium, Oncidium, and Maxillaria revealed electron-lucent intranuclear viroplasm and short, rodlike particles (40 to 50 × 100 nm) in the nucleus or cytoplasm typical of OFV-infected cells. RT-PCR amplifications from one sample of each genera resulted in PCR-product bands of approximately 800 bp. The Cymbidium RT-PCR product was cloned into a pGEM-T-Easy expression vector and sequenced using an ABI 3700 sequencer. The 619-bp nucleocapsid gene consensus sequence had 98% homology with the OFV isolate 0023 identified in Germany (GenBank Accession No. AF343870) (1). However, it had only approximately 85% nucleocapsid gene homology with other OFV isolates available through GenBank, including those from countries geographically closer to Costa Rica, such as Brazil (1). To our knowledge, this is the first report of OFV infecting orchids in Costa Rica. References: (1) A. L. Blanchfield et al. J. Phytopathol. 149:713, 2001. (2) H. Kondo et al. Bull. Res. Inst. Bioresour. Okayama Univ. 4:149, 1996.


Plant Disease ◽  
2000 ◽  
Vol 84 (4) ◽  
pp. 491-491 ◽  
Author(s):  
A. Gera ◽  
A. Kritzman ◽  
J. Cohen

In July 1998, Pittosporum tobira shrubs, grown in a nursery in the Sharon Valley of Israel, developed foliar ring spots, mild mosaic, and tip necrosis. Of 15 samples tested for the presence of Tomato spotted wilt virus (TSWV) with a commercially available enzyme-linked immunosorbent assay (ELISA) kit (Loewe Biochemica, Otterfing, Germany), 14 were positive for TSWV. Virus in crude sap extracted from symptomatic tissue was mechanically transmitted to Emilia spp., Petunia hybrida, Nicotiana glutinosa, N. benthamiana, and N. rustica plants, which developed symptoms characteristic of TSWV infection (1). ELISA tests of leaf sap extracted from naturally infected P. tobira and mechanically inoculated indicator plants gave a strong positive reaction to TSWV. Leaf samples of P. tobira were analyzed by transmission electron microscopy in leaf-dip preparations and thin sections of leaf tissues. Virus particles typical of a tospovirus were observed only in samples taken from symptomatic leaves. Primers specific to the nucleocapsid gene of TSWV were used in a reverse transcription-polymerase chain reaction (RT-PCR) assay to verify the presence of TSWV. RT-PCR gave an expected PCR product of ≈850 bp. The amplicon was cloned in the pGEM-T vector, and the recombinant clone was sequenced. The sequence of the cloned PCR product confirmed the identity of TSWV, verifying TSWV infection of P. tobira. This is the first report of infection of P. tobira by TSWV. Reference: (1) Y. Antignus et al. Phytoparasitica 25:319, 1997.


Plant Disease ◽  
2000 ◽  
Vol 84 (10) ◽  
pp. 1154-1154 ◽  
Author(s):  
M. T. Momol ◽  
H. R. Pappu ◽  
W. Dankers ◽  
J. R. Rich ◽  
S. M. Olson

In spring 2000, symptoms similar to thrips-vectored spotted wilt disease caused by Tomato spotted wilt virus (TSWV) were observed on habanero (Capsicum chinense) and tabasco (Capsicum frutescens) peppers in north Florida. Habanero peppers were from commercial fields grown for specialty markets and tabasco peppers were from research plots. Symptoms observed were leaf necrosis, fruit drop, necrotic stem lesions, and stunting. Fruit symptoms included chlorotic and necrotic spotting and distinct ring pattern and distortion. The incidence of symptomatic habanero peppers was 7 to 8% in one of the three production fields visited, and a lower incidence in two other fields (all in Jackson County). In tabasco pepper, TSWV was detected in spring and fall 1999, and spring 2000 seasons in 10 to 15% of the plants (Gadsden County). Adjacent tomato fields contained scattered plants exhibiting symptoms of TSWV. Diagnosis of TSWV from symptomatic stems, leaves, and fruit of habanero and tabasco peppers was confirmed by a double antibody sandwich enzyme linked immunosorbent assay (ELISA) using a commercially available kit (Agdia Inc., Elkhart, IN). ELISA values ranged from 1.57 to 1.95 for habanero pepper and 0.80 to 0.95 for tabasco pepper. The mean ELISA value of the negative controls was 0.001. To further verify TSWV infection, immunocapture reverse transcription-polymerase chain reaction (IC-RT-PCR) was performed (1). The primer pair 5′-ATGTCTAAGGTTAAGCTC-3′ and 5′-TTAAGCAAGTTCTGTGAG-3′ represented the first and last 18 bases of the coding region of the nucleocapsid gene of TSWV, respectively, and produces approximately 800 bp PCR product (1). IC-RT-PCR gave a single DNA band of expected size in both habanero and tabasco samples, while no amplification was found in an uninfected pepper sample. This is the first report of TSWV on habanero and tabasco peppers in Florida. TSWV continues to be an economically important disease constraint to the production of tomato, pepper (C. annuum), peanut, and tobacco in the southeastern United States (observations from Georgia and Florida). Meanwhile, the known host range is expanding to include new species of cultivated vegetables. References: (1) R. K. Jain et al.. Plant Dis. 82:900, 1998.


Plant Disease ◽  
2003 ◽  
Vol 87 (1) ◽  
pp. 102-102 ◽  
Author(s):  
S. Adkins ◽  
L. Breman ◽  
C. A. Baker ◽  
S. Wilson

Blackberry lily (Belamcanda chinensis (L.) DC.) is an herbaceous perennial in the Iridaceae characterized by purple-spotted orange flowers followed by persistent clusters of black fruit. In July 2002, virus-like symptoms including chlorotic ringspots and ring patterns were observed on blackberry lily leaves on 2 of 10 plants in a south Florida ornamental demonstration garden. Inclusion body morphology suggested the presence of a Tospovirus. Tomato spotted wilt virus (TSWV) was specifically identified by serological testing using enzyme-linked immunosorbent assay (Agdia, Elkhart, IN). Sequence analysis of a nucleocapsid (N) protein gene fragment amplified by reverse transcription-polymerase chain reaction (RT-PCR) with primers TSWV723 and TSWV722 (1) from total RNA confirmed the diagnosis. Nucleotide and deduced amino acid sequences of a 579 base pair region of the RT-PCR product were 95 to 99% and 95 to 100% identical, respectively, to TSWV N-gene sequences in GenBank. Since these 2-year-old plants were grown on-site from seed, they were likely inoculated by thrips from a nearby source. Together with a previous observation of TSWV in north Florida nursery stock (L. Breman, unpublished), this represents, to our knowledge, the first report of TSWV infection of blackberry lily in North America although TSWV was observed in plants of this species in Japan 25 years ago (2). References: (1) S. Adkins, and E. N. Rosskopf. Plant Dis. 86:1310, 2002. (2) T. Yamamoto and K.-I. Ohata. Bull. Shikoku Agric. Exp. Stn. 30:39, 1977.


Plant Disease ◽  
2008 ◽  
Vol 92 (7) ◽  
pp. 1132-1132 ◽  
Author(s):  
M. C. Cebrián ◽  
M. C. Córdoba-Sellés ◽  
A. Alfaro-Fernández ◽  
J. A. Herrera-Vásquez ◽  
C. Jordá

Viburnum sp. is an ornamental shrub widely used in private and public gardens. It is common in natural wooded areas in the Mediterranean Region. The genus includes more than 150 species distributed widely in climatically mild and subtropical regions of Asia, Europe, North Africa, and the Americas. In January 2007, yellow leaf spotting in young plants of Viburnun lucidum was observed in two ornamental nurseries in the Mediterranean area of Spain. Symptoms appeared sporadically depending on environmental conditions but normally in cooler conditions. Leaf tissue from 24 asymptomatic and five symptomatic plants was sampled and analyzed by double-antibody sandwich (DAS)-ELISA with specific polyclonal antibodies against Tomato spotted wilt virus (TSWV) (Loewe Biochemica, Sauerlach, Germany) and Alfalfa mosaic virus (AMV) (SEDIAG S.A.S, Longvic, France). All symptomatic plants of V. lucidum were positive for Alfalfa mosaic virus (AMV). The presence of AMV was tested in the 29 samples by one-step reverse transcription (RT)-PCR with the platinum Taq kit (Invitrogen Life Technologies, Barcelona, Spain) using primers derived from a partial fragment of the coat protein gene of AMV (2). The RT-PCR assays produced an expected amplicon of 700 bp in the five symptomatic seropositive samples. No amplification product was observed when healthy plants or a water control were used as a template in the RT-PCR assays. One PCR product was purified (High Pure PCR Product Purification Kit; Roche Diagnostics, Mannheim, Germany) and directly sequenced (GenBank Accession No. EF427449). BLAST analysis showed 96% nucleotide sequence identity to an AMV isolate described from Phlox paniculata in the United States (GenBank Accession No. DQ124429). This virosis has been described as affecting Viburnum tinus L. in France (1). To our knowledge, this is the first report of natural infection of Viburnum lucidum with AMV in Spain, which might have important epidemiological consequences since V. lucidum is a vegetatively propagated ornamental plant. References: (1) L. Cardin et al. Plant Dis. 90:1115, 2006. (2) Ll. Martínez-Priego et al. Plant Dis. 88:908, 2004.


Plant Disease ◽  
2005 ◽  
Vol 89 (11) ◽  
pp. 1243-1243 ◽  
Author(s):  
C. Córdoba-Sellés ◽  
L. Martínez-Priego ◽  
R. Muńoz-Gómez ◽  
C. Jordá-Gutiérrez

So far, only three viral diseases have been identified in onion crops grown in Spain. These are Tomato spotted wilt virus (TSWV), Onion yellow dwarf virus (OYDV), and Leek yellow stripe virus (LYSV). In September 2003, unusual virus-like symptoms including straw-colored, dry, tan, diamond-shaped lesions on the leaves and stalks, sometimes with necrotic lesions, curled leaves, and bulbs of reduced size, were observed on several onion plants (Allium cepa L.) in commercial fields in Albacete, Spain. Severely affected plants eventually died. To verify the identity of the disease found in the Spanish onions, double-antibody sandwich enzyme-linked immunosorbent assay (DAS-ELISA) was performed on leaf extracts of symptomatic onions using specific polyclonal antibodies against OYDV, LYSV, Cucumber mosaic virus (CMV) (Biorad Phyto-Diagnostics, Marnes-La Coquette, France), Iris yellow spot virus (IYSV), and TSWV (Loewe Biochemica, Sauerlach, Germany). All samples of infected onion tissue were positive for IYSV and negative for the other viruses tested. To confirm the ELISA results, viral RNA was extracted from five of the ELISA-positive onion samples, a healthy onion plant, and a positive control for IYSV (DSMZ, Braunschweig. Germany). The extracted RNA was used in a One-Step reverse transcription-polymerase chain reaction (RT-PCR) assay using SuperScript Platinum Taq (Invitrogen Life Technologies, Barcelona, Spain) in the presence of the IYSV1S and IYSV1A primers for the nucleocapsid gene of IYSV (1). The RT-PCR assay produced an amplicon of the expected size of 790 bp. No amplification products were observed when healthy plants or a water control were used as templates in the RT-PCR reaction. To establish the authenticity of the virus from onion, the PCR products were purified (High Pure PCR Product Purification Kit, Roche Diagnostics, Mannheim, Germany), sequenced, and the nucleotide sequences obtained were analyzed and compared with the published sequences in GenBank. The PCR product was 97% identical to the sequence of the IYSV nucleocapsid gene (Genbank Accession No. AB121026). IYSV, an emerging tospovirus that is potentially a devastating pathogen of onion, has been reported in many locations in Brazil, Japan, the Netherlands, Israel, Australia, the western United States, Slovenia, and Iran (2). IYSV is included in the European and Mediterranean Plant Protection Organization alert list of viruses (2), and to our knowledge, this is the first report of IYSV in Spain. This tospovirus is transmitted in a propagative manner by Thrips tabaci. Although the vector is present in large populations in the onion-growing areas in Spain, the efficiency of the Mediterranean ecotype in transmitting IYSV is not known. References: (1) B. A. Coutts et al. Australas. Plant Pathol. 32:555, 2003. (2) European and Mediterranean Plant Protection Organization. EPPO on-line publication at www.eppo.org/QUARANTINE/Alert_List/Viruses/irysxx.html .


Plant Disease ◽  
2006 ◽  
Vol 90 (4) ◽  
pp. 524-524 ◽  
Author(s):  
C. Nischwitz ◽  
S. W. Mullis ◽  
R. D. Gitaitis ◽  
A. S. Csinos

Tomato spotted wilt virus (TSWV) is a member of the family Bunyaviridae and has a wide host range including important crops such as tomato, pepper, tobacco, peanut, and onion. In areas of Georgia, soybean (Glycine max) is double cropped between two onion crops and as a rotation crop with peanuts. Soybeans do not show any TSWV symptoms, and therefore, have not been tested on a large scale for the virus. However, because symptomless weed and crop plants provide a reservoir for TSWV and the thrips vectors (2), a survey was conducted during the summer of 2005 to evaluate the occurrence of TSWV in soybean. The survey took place in seven counties in southern Georgia with field sizes ranging between 0.4 and 20 ha (1 and 50 acres). Soybean cultivars included Haskell, DP7220, DP6770, Pioneer 97B52, and Vigoro V622NRR. Of 848 randomly selected plants tested using the double-antibody sandwich enzyme-linked immunosorbent assay (DAS-ELISA) (Agdia, Inc., Elkhart, IN), 6.6% tested positive for TSWV. Plants testing positive ranged from seedling to the pod-setting stages. Leaves and roots of several plants tested positive, indicating a systemic infection. Soybean plants testing positive using ELISA were blotted onto FTA cards (Whatman Inc., Brentford, UK) to bind viral RNA for preservation, and the blotted samples were processed according to the manufacturer's protocol. Reverse transcription-polymerase chain reaction using punch-outs from the FTA cards and TSWV nucleocapsid gene specific forward and reverse primers (5′-TTAAGCAAGTTCTGTGAG-3′ and 5′-ATGTCTAAGGTTAAGCTC-3′), respectively (4), confirmed the identity of TSWV. TSWV has been found in soybean in other parts of the world (1) but has only been reported in the United States in a survey from Tennessee (3). To our knowledge, this is the first report of the occurrence of TSWV in soybean in Georgia. The role soybean plays as a reservoir or green bridge for thrips and TSWV is currently unknown. References: (1) A. R. Golnaraghi et al. Plant Dis. 88:1069, 2004. (2) R. L. Groves et al. Phytopathology 91:891, 2001. (3) B. S. Kennedy and B. B. Reddick. Soybean Genet. Newsl. 22:197, 1995. (4) H. R. Pappu et al. Tob. Sci. 40:74, 1996.


Plant Disease ◽  
2006 ◽  
Vol 90 (4) ◽  
pp. 525-525 ◽  
Author(s):  
C. Nischwitz ◽  
S. W. Mullis ◽  
R. D. Gitaitis ◽  
A. S. Csinos ◽  
S. M. Olson

Tomato spotted wilt virus (TSWV) is a member of the family Bunyaviridae. It has many important crop hosts including tomato, pepper, tobacco, peanut, and onion. In Georgia, Vidalia onions (Allium cepa), a close relative of leek, can be infected by TSWV and Iris yellow spot virus (IYSV), which is another thrips-vectored tospovirus (2). For this reason, samples of leek transplants with virus-like symptoms in one field at the border of Georgia and Florida were tested for the presence of TSWV and IYSV. The transplants had been grown from seed in a greenhouse at the same location. The sampled plants exhibited extended bleaching of leaf tips and necrotic lesions. These symptoms were also seen on onion plants infected with TSWV and IYSV. The only natural infections of leek with IYSV have been reported thus far only from Reunion Island (4) and Slovenia (1), but to our knowledge, TSWV has not been reported as a pathogen of leek. Green tissue near the necrotic lesions and bleached tips of one symptomatic leaf per plant was sampled and analyzed using a double-antibody sandwich enzyme-linked immunosorbent assay (DAS-ELISA) (Agdia, Inc., Elkhart, IN). Of 90 plants tested, eight were positive for TSWV and none were positive for IYSV. Leek samples testing positive using ELISA were blotted onto FTA cards (Whatman Inc., Brentford, UK) to bind viral RNA for preservation and then processed according to the manufacturer's protocol. Punch-outs from the FTA cards were used for reverse transcription polymerase chain reaction (RT-PCR) with the TSWV-specific forward primer (5′-TTAAGCAAGTTCTGTGAG-3′) and reverse primer (5′-ATGTCTAAGGTTAAGCTC-3′) (3) to confirm the identity of TSWV. The primers are specific to the viral nucleocapsid gene. An amplicon of the expected size (774 bp) was produced from TSWV ELISA-positive leek plants, but not from healthy controls. TSWV has been found in many plants worldwide, but to our knowledge this is the first report of TSWV infecting leek. The effect that TSWV has on leek production is currently unknown. References: (1) D. A. Benson et al. Nucleic Acids Res. 1:32 (Database issue):D23-6, 2004. (2) S. W. Mullis et al. Plant Dis. 88:1285, 2004. (3) H. R. Pappu et al. Tob. Sci. 40:74, 1996. (4) I. Robène-Soustrade et al. Online publication. New Dis. Rep. 11, 2005.


Plant Disease ◽  
2000 ◽  
Vol 84 (4) ◽  
pp. 491-491 ◽  
Author(s):  
C. R. Wilson ◽  
A. J. Wilson ◽  
S. J. Pethybridge

Common agapanthus (Agapanthus praecox subsp. orientalis), native to South Africa, is a popular ornamental flowering bulb species belonging to the Amaryllidaceae and is commonly found in residential gardens. Roots from some Agapanthus sp. also are used in traditional medicine in Africa. Common agapanthus collected from a residential property in Hobart, Tasmania, Australia, showed leaf symptoms of concentric ring and line patterns, irregular chlorotic blotches, and streaks. Symptomatic plants were severely stunted and failed to flower. Symptomatic leaves prematurely senesced, but young foliage subsequently produced was symptomless. Similar symptoms have been reported in other members of the Amaryllidaceae and are associated with infection by Tomato spotted wilt virus (TSWV; e.g., Nerine and Hippeastrum spp.) or Cucumber mosaic virus (CMV; e.g., Hippeastrum sp.) (2). The presence of TSWV and absence of CMV in symptomatic plants of common agapanthus was determined by enzyme-linked immunosorbent assay. Confirmation of TSWV infection was provided by reverse-transcription polymerase chain reaction assay with primers specific to the nucleocapsid protein gene of TSWV, with nucleic extracts from symptomatic plants producing an expected ≈800-bp amplicon (1). This is the first report of TSWV infection of any species within the Amaryllidaceae in Australia and the first report of the occurrence of TSWV in common agapanthus. References: (1) R. K. Jain et al. Plant Dis. 82:900, 1998. (2) G. Loebenstein et al. 1995. Virus and Virus-like Diseases of Bulb and Flower Crops. John Wiley & Sons, Chichester, U.K.


Sign in / Sign up

Export Citation Format

Share Document