scholarly journals First Report of Orchid fleck virus in Costa Rica

Plant Disease ◽  
2002 ◽  
Vol 86 (12) ◽  
pp. 1402-1402 ◽  
Author(s):  
Juliana Freitas-Astúa ◽  
Lisela Moreira ◽  
Carmen Rivera ◽  
Carlos M. Rodríguez ◽  
Elliot W. Kitajima

Orchid fleck virus (OFV), a tentative member of the family Rhabdoviridae, infects orchids in several countries. The virus is vectored worldwide by the mite Brevipalpus californicus (Banks) (Acari: Tenuipalpidae). Eleven plants of Oncidium spp. and one plant each of the genera Cymbidium and Maxillaria exhibiting numerous yellow flecks and necrotic ringspot lesions on leaves were collected in two private orchid collections in Costa Rica. Presence of OFV was assessed by plate-trapped antigen enzyme-linked immunosorbent assay (PTA-ELISA) using an antiserum developed against an OFV isolate in Japan (2), analyses of ultrathin sections of the host cell with transmission electron microscopy (TEM), and reverse transcription-polymerase chain reaction (RT-PCR) amplification using specific primers for the viral nucleocapsid gene (1). Eight of eleven Oncidium samples, and both Cymbidium and Maxillaria samples tested positive for OFV with PTA-ELISA having A405 values ranging from 3.9 to 14.6 times higher than negative controls. Thin sections from individual samples of Cymbidium, Oncidium, and Maxillaria revealed electron-lucent intranuclear viroplasm and short, rodlike particles (40 to 50 × 100 nm) in the nucleus or cytoplasm typical of OFV-infected cells. RT-PCR amplifications from one sample of each genera resulted in PCR-product bands of approximately 800 bp. The Cymbidium RT-PCR product was cloned into a pGEM-T-Easy expression vector and sequenced using an ABI 3700 sequencer. The 619-bp nucleocapsid gene consensus sequence had 98% homology with the OFV isolate 0023 identified in Germany (GenBank Accession No. AF343870) (1). However, it had only approximately 85% nucleocapsid gene homology with other OFV isolates available through GenBank, including those from countries geographically closer to Costa Rica, such as Brazil (1). To our knowledge, this is the first report of OFV infecting orchids in Costa Rica. References: (1) A. L. Blanchfield et al. J. Phytopathol. 149:713, 2001. (2) H. Kondo et al. Bull. Res. Inst. Bioresour. Okayama Univ. 4:149, 1996.

Plant Disease ◽  
1998 ◽  
Vol 82 (3) ◽  
pp. 351-351 ◽  
Author(s):  
S. S. Pappu ◽  
H. R. Pappu ◽  
R. D. Gitaitis ◽  
J. D. Gay

In 1996, volunteer watermelon plants in a tobacco field in Coffee County, GA, exhibited foliar symptoms that included necrotic ring spots and veinal necrosis. Watermelon plants from experimental plots of the Coastal Plain Experiment Station in Tifton, GA, similarly showed necrotic lesions, often resulting in necrotic ring spots during the late summer of 1997. Out of 16 samples tested for the presence of tomato spotted wilt tospovirus (TSWV) with a commercially available enzyme-linked immunosorbent assay (ELISA) kit (Agdia, Elkhart, IN), six were positive for TSWV. Primers specific to the nucleocapsid gene of TSWV were used in a reverse transcription-polymerase chain reaction assay (RT-PCR) (1) to verify the presence of TSWV. RT-PCR gave an expected PCR product of approximately 350 bp. The amplicon was cloned in pGEM-T vector and the recombinant clone was sequenced. The sequence of the cloned PCR product confirmed the identity of TSWV, thus verifying TSWV infection of watermelon. The potential impact of TSWV on watermelon crop in Georgia will be investigated. This is the first report of natural infection of watermelon by TSWV in Georgia. Reference: (1) H. R. Pappu et al. Tobacco Sci. 40:74, 1996.


Plant Disease ◽  
2000 ◽  
Vol 84 (4) ◽  
pp. 491-491 ◽  
Author(s):  
A. Gera ◽  
A. Kritzman ◽  
J. Cohen

In July 1998, Pittosporum tobira shrubs, grown in a nursery in the Sharon Valley of Israel, developed foliar ring spots, mild mosaic, and tip necrosis. Of 15 samples tested for the presence of Tomato spotted wilt virus (TSWV) with a commercially available enzyme-linked immunosorbent assay (ELISA) kit (Loewe Biochemica, Otterfing, Germany), 14 were positive for TSWV. Virus in crude sap extracted from symptomatic tissue was mechanically transmitted to Emilia spp., Petunia hybrida, Nicotiana glutinosa, N. benthamiana, and N. rustica plants, which developed symptoms characteristic of TSWV infection (1). ELISA tests of leaf sap extracted from naturally infected P. tobira and mechanically inoculated indicator plants gave a strong positive reaction to TSWV. Leaf samples of P. tobira were analyzed by transmission electron microscopy in leaf-dip preparations and thin sections of leaf tissues. Virus particles typical of a tospovirus were observed only in samples taken from symptomatic leaves. Primers specific to the nucleocapsid gene of TSWV were used in a reverse transcription-polymerase chain reaction (RT-PCR) assay to verify the presence of TSWV. RT-PCR gave an expected PCR product of ≈850 bp. The amplicon was cloned in the pGEM-T vector, and the recombinant clone was sequenced. The sequence of the cloned PCR product confirmed the identity of TSWV, verifying TSWV infection of P. tobira. This is the first report of infection of P. tobira by TSWV. Reference: (1) Y. Antignus et al. Phytoparasitica 25:319, 1997.


Plant Disease ◽  
2000 ◽  
Vol 84 (2) ◽  
pp. 202-202 ◽  
Author(s):  
L. Levy ◽  
V. Damsteegt ◽  
R. Welliver

Plum pox (Sharka) is the most important virus disease of Prunus in Europe and the Mediterranean region and is caused by Plum pox potyvirus (PPV). In September 1999, PPV-like symptoms were observed in peach fruit culls in a packinghouse in Pennsylvania. All symptomatic fruit originated from a single block of peach (P. persica cv. Encore) in Adams County. Trees in the block exhibited ring pattern symptoms on their leaves. A potyvirus was detected in symptomatic fruit using the Poty-Group enzyme-linked immunosorbent assay (ELISA) test from Agdia (Elkhart, IN). Reactions for symptomatic peach fruit and leaves also were positive using triple-antibody sandwich ELISA with the PPV polyclonal antibody from Bioreba (Carrboro, NC) for coating, the Poty-Group monoclonal antibody (MAb; Agdia) as the intermediate antibody, and double-antibody sandwich ELISA with PPV detection kits from Sanofi (Sanofi Diagnostics Pasteur, Marnes-La-Coquette, France) and Agdia and the REAL PPV kit (Durviz, Valencia, Spain) containing universal (5B) and strain typing (4DG5 and AL) PPV MAbs (1). PPV also was identified by immunocapture-reverse transcription-polymerase chain reaction (IC-RT-PCR) amplification and subsequent sequencing of the 220-bp 3′ noncoding region (2) (>99% sequence homology to PPV) and by IC-RT-PCR amplification of a 243-bp product in the coat protein (CP) gene (1). The virus was identified as PPV strain D based on serological typing with strainspecific MAbs and on PCR-restriction fragment length polymorphism of the CP IC-RT-PCR product with Rsa1 and Alu1 (1). This is the first report of PPV in North America. References: (1) T. Candresse et al. Phytopathology 88:198, 1998. (2) L. Levy and A. Hadidi. EPPO Bull. 24:595, 1994.


Plant Disease ◽  
1998 ◽  
Vol 82 (12) ◽  
pp. 1405-1405 ◽  
Author(s):  
J. Staniulis ◽  
J. Stankiene ◽  
K. Sasnauskas ◽  
A. Dargeviciute

Plum pox (sharka) disease caused by plum pox potyvirus (PPV) is considered the most important virus disease of stone fruit trees in Europe and the Mediterranean region. Nearly all those countries that produce stone fruits are affected (3). The causal virus of the disease is a European Plant Protection Organization A2 quarantine pathogen. Symptoms of leaf mottling, diffuse chlorotic spots, rings, and vein banding of varied intensity characteristic for plum pox virus infection were observed in the plum (Prunus domestica) orchard tree collection of the Lithuanian Institute of Horticulture in Babtai in 1996. Presence of this virus in the diseased trees was confirmed by double antibody sandwich-enzyme-linked immunosorbent assay (DAS-ELISA) with kits from BIOREBA (Reinach, Switzerland) and by polyclonal antibodies raised against a Moldavian isolate of PPV courtesy of T. D. Verderevskaya (Institute of Horticulture, Kishinev, Moldova). ELISAs with both sources of antiserum were positive for presence of PPV. Electron microscopy revealed the presence of potyvirus-like particles averaging 770 nm in extracts of mechanically inoculated plants of Chenopodium foetidum (chlorotic LL [local lesions]) and Pisum sativum cvs. Rainiai and Citron (mottling). For molecular diagnosis and characterization of this isolate, PPV-971, reverse transcription-polymerase chain reaction (RT-PCR) was employed. Total RNA from the leaves of infected pea was isolated as described (2). High molecular weight RNA selectively precipitated with 2 M lithium chloride was used for RT-PCR amplification of the coat protein encoding sequence by use of specific primers complementary to 5′ and 3′ parts of PPV coat protein L1 (GenBank accession no. X81081). Amino acid sequence comparison with GenBank data indicated 98.2% similarity with coat protein of PPV potyvirus isolated by E. Mais et al. (accession no. X81083) and 97.3% with PPV strain Rankovic (1).The specific DNA fragment, corresponding to predicted coat protein sequence size, was cloned into Escherichia coli pUC57 for DNA sequencing. Expression of the cloned sequence in bacteria and yeast expression systems is under investigation. The presence of PPV in plum trees in the 9-year-old collection at Babtai was confirmed by DAS-ELISA in 1997 and again in 1998. PPV was then detected in 20% of symptomatic trees of three cultivars. The Lithuanian PPV isolate reacted positively with “universal” Mab.5b and with a Mab (Mab.4DG5) specific for PPV-D. No reaction was observed with Mabs specific for PPV-M (Mab.AL), PPV-C (Mab.AC and Mab.TUV), and PPV-El Amar (Mab.EA24). PPV-971 seems to be a typical member of the less aggressive Dideron strain cluster of PPV (D. Boscia, personal communication). This is the first report of PPV in Lithuania and confirms the necessity for continuing the precautionary measures established in this country for indexing of nursery plum trees used for graft propagation. References: (1) S. Lain et al. Virus Res. 13:157, 1989. (2) J. Logemann et al. Anal. Biochem. 163:16, 1987. (3) M. Nemeth. OEPP/EPPO Bull. 24:525, 1994.


Plant Disease ◽  
2005 ◽  
Vol 89 (11) ◽  
pp. 1243-1243 ◽  
Author(s):  
C. Córdoba-Sellés ◽  
L. Martínez-Priego ◽  
R. Muńoz-Gómez ◽  
C. Jordá-Gutiérrez

So far, only three viral diseases have been identified in onion crops grown in Spain. These are Tomato spotted wilt virus (TSWV), Onion yellow dwarf virus (OYDV), and Leek yellow stripe virus (LYSV). In September 2003, unusual virus-like symptoms including straw-colored, dry, tan, diamond-shaped lesions on the leaves and stalks, sometimes with necrotic lesions, curled leaves, and bulbs of reduced size, were observed on several onion plants (Allium cepa L.) in commercial fields in Albacete, Spain. Severely affected plants eventually died. To verify the identity of the disease found in the Spanish onions, double-antibody sandwich enzyme-linked immunosorbent assay (DAS-ELISA) was performed on leaf extracts of symptomatic onions using specific polyclonal antibodies against OYDV, LYSV, Cucumber mosaic virus (CMV) (Biorad Phyto-Diagnostics, Marnes-La Coquette, France), Iris yellow spot virus (IYSV), and TSWV (Loewe Biochemica, Sauerlach, Germany). All samples of infected onion tissue were positive for IYSV and negative for the other viruses tested. To confirm the ELISA results, viral RNA was extracted from five of the ELISA-positive onion samples, a healthy onion plant, and a positive control for IYSV (DSMZ, Braunschweig. Germany). The extracted RNA was used in a One-Step reverse transcription-polymerase chain reaction (RT-PCR) assay using SuperScript Platinum Taq (Invitrogen Life Technologies, Barcelona, Spain) in the presence of the IYSV1S and IYSV1A primers for the nucleocapsid gene of IYSV (1). The RT-PCR assay produced an amplicon of the expected size of 790 bp. No amplification products were observed when healthy plants or a water control were used as templates in the RT-PCR reaction. To establish the authenticity of the virus from onion, the PCR products were purified (High Pure PCR Product Purification Kit, Roche Diagnostics, Mannheim, Germany), sequenced, and the nucleotide sequences obtained were analyzed and compared with the published sequences in GenBank. The PCR product was 97% identical to the sequence of the IYSV nucleocapsid gene (Genbank Accession No. AB121026). IYSV, an emerging tospovirus that is potentially a devastating pathogen of onion, has been reported in many locations in Brazil, Japan, the Netherlands, Israel, Australia, the western United States, Slovenia, and Iran (2). IYSV is included in the European and Mediterranean Plant Protection Organization alert list of viruses (2), and to our knowledge, this is the first report of IYSV in Spain. This tospovirus is transmitted in a propagative manner by Thrips tabaci. Although the vector is present in large populations in the onion-growing areas in Spain, the efficiency of the Mediterranean ecotype in transmitting IYSV is not known. References: (1) B. A. Coutts et al. Australas. Plant Pathol. 32:555, 2003. (2) European and Mediterranean Plant Protection Organization. EPPO on-line publication at www.eppo.org/QUARANTINE/Alert_List/Viruses/irysxx.html .


Plant Disease ◽  
2005 ◽  
Vol 89 (7) ◽  
pp. 776-776 ◽  
Author(s):  
M. Mnari Hattab ◽  
J. Kummert ◽  
S. Roussel ◽  
K. Ezzaier ◽  
A. Zouba ◽  
...  

Viruses, distributed worldwide on cucurbits, cause severe damage to crops. Virus surveys in 2003 and 2004 were made in all the major cucurbit-growing areas in Tunisia. Large populations of aphids (Aphis gossypii Glover) and severe yellowing symptoms of older leaves of cucurbits were observed in outdoor and under plastic-tunnel cultivation, suggesting the presence of Cucurbit aphid-borne yellows virus (CABYV, genus Polerovirus, family Luteoviridae). Leaf samples collected from symptomatic and asymptomatic plants of melon (Cucumis melo L.), cucumber (C. sativus L.), squash (Cucurbita pepo L.), watermelon (Citrullus lanatus L.), and ware cucurbit (Ecballium elaterium L. T. Richard) were screened for the presence of CABYV using enzyme-linked immunosorbent assay (ELISA) and reverse transcription-polymerase chain reaction (RT-PCR). Reference isolate, CABYV-N (GenBank Accession No. X76931) was provided by H. Lecoq (INRA-Monfavet Cedex, France). Sample extracts from fresh leaf tissues were tested using ELISA with an antiserum prepared against this isolate. In addition, total RNA was extracted from fresh leaf tissues according to the technique of Celix et al. (2) using the Titan RT-PCR kit from Roche Diagnostics (Penzberg, Germany). Forward primer (5′-GAGGCGAAGGCGAAGAAATC-3′) and reverse primer (5′-TCTGGACCTGGCACTTGATG-3′) were designed with the available sequence of the reference isolate. ELISA tests demonstrated that 91 plants were positive among 160 plants tested with severe yellowing symptoms. All asymptomatic plants were negative. RT-PCR results yielded an expected 550-bp product that was amplified from the reference isolate. Of the 160 plants tested using ELISA, 106 plants were screened with RT-PCR including the 91 plants that were positive in ELISA. These 91 plants also were positive after RT-PCR amplification as were 12 more plants. This demonstrated that the RT-PCR test is more sensitive. No amplicons were produced from extracts of asymptomatic plants, RNA preparations of Cucurbit yellow stunting disorder virus (CYSDV), or Beet pseudo yellows virus (BPYV) positive controls provided by B. Falk (University of California, Davis). CYSDV and BPYV can induce similar yellowing symptoms in cucurbits. The results of the ELISA and RT-PCR tests showed that CABYV is widely distributed on five cucurbit species in the major growing areas of Tunisia including the northern, Sahel, central, and southern regions where it was detected, respectively, in 10 of 25, 11 of 21, 24 of 37, and 58 of 77 samples tested. CABYV was detected at the rates of 63 of 72 on melon, 10 of 21 on cucumber, 17 of 24 on squash, 10 of 25 on watermelon, and 3 of 18 on ware cucurbit. CABYV also seems to be widespread throughout the Mediterranean Basin (1,3,4), but to our knowledge, this is the first report of the occurrence of CABYV in Tunisia on different species of cucurbit and ware cucurbit. References: (1) Y. Abou-Jawdah et al. Crop Prot. 19:217, 2000. (2) A. Celix et al. Phytopathology 86:1370, 1996. (3) M. Juarez et al. Plant Dis. 88:907, 2004. (4) H. Lecoq et al. Plant Pathol. 41:749, 1992.


Plant Disease ◽  
2000 ◽  
Vol 84 (10) ◽  
pp. 1155-1155 ◽  
Author(s):  
J. C. Díaz-Pérez ◽  
H. R. Pappu

During the 2000 spring season, tomatillo (Physalis ixocarpa) plants showing chlorotic streaks on leaves were observed in an experimental plot of the University of Georgia's Coastal Plain Experiment Station in Tift County, GA. Leaf samples from 192 plants were collected. These included plants that had chlorotic streaks and those without obvious symptoms. Samples were tested by ELISA using a commercially available Tomato spotted wilt virus (TSWV) detection kit (Agdia Inc., Elkhart, IN). TSWV was found in 10 samples that had chlorotic streaks on leaves, and the remaining plants with no obvious symptoms were negative for TSWV. Infected plants were found in both cultivars, Verde Puebla and Toma Verde. The presence of the virus had no apparent effect on plant size or fruit appearance. TSWV infection of the ELISA-positive samples was further verified by immunocapture reverse transcription-polymerase chain reaction (IC-RT-PCR) (1). The primer pair (5′-ATGTCTAAGGTTAAGCTC-3′ and 5′ TTAAGCAAGTTCTGTGAG-3′) represented the first and last 18 bases of the coding region of the nucleocapsid gene of TSWV, respectively, and produced approximately 800-bp PCR product (1). IC-RT-PCR gave a single DNA band of expected size and no amplification was found in the uninfected control. This is the first report of TSWV on tomatillo in Georgia. Reference: (1) R. K. Jain et al. Plant Dis. 82:900, 1998.


Plant Disease ◽  
2008 ◽  
Vol 92 (12) ◽  
pp. 1709-1709 ◽  
Author(s):  
J. C. Barbosa ◽  
A. P. M. Teixeira ◽  
A. G. Moreira ◽  
L. E. A. Camargo ◽  
A. Bergamin Filho ◽  
...  

During 2006 and 2007 in the region of Sumaré, state of São Paulo, Brazil, surveys were done on tomato (Solanum lycopersicum L.) virus diseases in three open field-grown crops. The data revealed low incidence (0.25 to 3.42%) of randomly distributed plants exhibiting interveinal chlorosis and some necrosis on the basal leaves. Symptoms were only observed on old fruit-bearing plants. Preliminary analysis of thin sections of symptomatic leaves from one plant by transmission electron microscopy revealed the presence of aggregates of thin, flexible, and elongated particles in some phloem vessels, suggesting infection with a member of the genus Crinivirus, family Closteroviridae. Total RNA was extracted separately from leaves of 10 symptomatic plants and used for one-step reverse transcription (RT)-PCR using the HS-11/HS-12 primer pair, which amplifies a fragment of 587 bp from the highly conserved region of the heat shock protein (HSP-70) homolog gene reported for Tomato infectious chlorosis virus (TICV) and Tomato chlorosis virus (ToCV) (1). The RT-PCR product was subsequently tested by nested-PCR for single detection of TICV and ToCV using primer pairs TIC-3/TIC-4 and ToC-5/ToC-6, respectively (1). Only one fragment of approximately 463 bp was amplified from 7 of the 10 plants with the primer pair specific for ToCV. No amplification was obtained with the primers specific for TICV. Two amplicons of 463 bp were purified and directly sequenced in both directions. Sequence comparisons of the 463-bp consensus sequence (GenBank Accession No. EU868927) revealed 99% identity with the reported sequence of ToCV from the United States (GenBank Accession No. AY903448) (3). Virus-free adults of Bemisia tabaci biotype B confined on symptomatic tomato leaves for a 24-h acquisition access period were able to transmit the virus to healthy tomato plants, which reproduced the original symptoms on the bottom leaves 65 days after inoculation under greenhouse conditions. Infection from transmission was confirmed by RT-PCR using the HS-11/HS-12 primer pair. In addition to B. tabaci biotype B, the greenhouse whitefly, Trialeurodes vaporariorum, has also been reported as a vector of ToCV, although it is less efficient than the B. tabaci biotype B in transmission of this virus (4). T. vaporariorum, which was previously considered limited to greenhouses, was recently reported in tomato and green bean (Phaseolus vulgaris L.) crops under field conditions in São Paulo State (2). Therefore, it might also contribute to the spread of ToCV in tomato crops in São Paulo. To our knowledge, this is the first report of ToCV in Brazil and South America. References: (1) C. I. Dovas et al. Plant Dis.86:1345, 2002. (2) A. L. Lourenção et al. Neotrop. Entomol. 37:89, 2008. (3) W. M. Wintermantel et al. Arch. Virol. 15:2287, 2005. (4) W. M. Wintermantel and G. C. Wisler. Plant Dis. 90:814, 2006.


Plant Disease ◽  
2005 ◽  
Vol 89 (3) ◽  
pp. 338-338 ◽  
Author(s):  
M. Navratil ◽  
D. Safarova ◽  
R. Karesova ◽  
K. Petrzik

Plum pox disease, caused by Plum pox virus (PPV), is the most severe virus disease of plums, apricots, and peaches. The disease causes heavy losses for fruit growers and the international trade of propagation materials and fresh fruits. PPV was first reported in Bulgaria in 1917 (1). It is now widespread in Europe and has been reported from Cyprus, Syria, Egypt, India, Kazakhstan, Chile, the United States, and Canada. Leaves on symptomatic apricot trees (Prunus armeniaca cvs. Hong Mei and Bai Mei and a selected genotype) in the Hunan Province of China showed typical yellow rings and diffused chlorotic spots. Samples from three suspected trees were repeatedly analyzed using double-antibody sandwich enzyme-linked immunosorbent assay (DAS-ELISA) and reverse transcription-polymerase chain reaction (RT-PCR) in the summers of 2001-2003. PPV was detected in leaves, bark, and leaf buds of all three trees using ELISA with polyclonal and monoclonal antibodies provided by M. Navratil, Palacky University, Olomouc, Czech Republic (3). The results were confirmed using RT-PCR amplification of a 243-bp of the coat protein gene with a PPV-specific primer pair (2). BLAST analysis of two RT-PCR product sequences (GenBank Accession Nos. AY750961 and AY795603) showed 100% homology to multiple sequences of the PPV-D strain (GenBank Accession Nos. X81080, AF440743, and AF401295). The third sequence (GenBank Accession No. AY795602) had a C at position 112 rather than the T found in the other sequences. The ELISA, RT-PCR, and sequence results indicate that PPV-D was present in the apricot trees. To our knowledge, this is the first indication of PPV occurrence in China. This sporadic incidence of PPV on apricot trees requires addressing problems with the occurrence and spread of plum pox diseases in China and starting an eradication program. References: (1) D. Atanasoff. Annu. Univ. Sofia Fac. Agron. et Sylvic. 11:49, 1932. (2) T. Candresse et al. Phytopathology. 88:198, 1998. (3) I. Hilgert et al. Hybridoma. 12:215, 1993.


Plant Disease ◽  
2020 ◽  
Author(s):  
Praveen Baliram Roylawar ◽  
Kiran S Khandagale ◽  
Pragati Randive ◽  
Gorakshnath E. Atre ◽  
Suresh Janardhan Gawande ◽  
...  

Garlic (Allium sativum L.) is an economically important spice and vegetable crop grown throughout the world. Garlic viral disease complex caused by multiple virus infections is an important constraint in exploiting the potential yield of garlic. Among these viral pathogens, allexivirus (family Alphaflexiviridae) is the genus of viruses known for their degenerative effect on garlic yield. Their coexistence with other viruses, particularly potyviruses, has an adverse effect on garlic yield and quality (Perotto et al. 2010). During Sept 2018, while screening garlic germplasm accessions for the presence of allexiviruses, symptoms like foliar mosaic and curling were observed on accession G-204, planted at an experimental plot of ICAR-DOGR, Pune, India. A total of five samples comprised of five randomly selected G-204 garlic plants were collected from the experimental plot. Each sample contained leaves from the top, middle, and bottom portion of the individual garlic plants. These samples were subjected to RNA extraction using the RNeasy Plant Mini Kit (Qiagen, Germany) followed by reverse transcription (RT) using the Transcriptor cDNA synthesis kit (Roche Diagnostics, GmbH, Germany). The extracted RNA was then tested for allexiviruses such as garlic virus A (GarV-A), garlic virus B (GarV-B), garlic virus C (GarV-C), garlic virus D (GarV-D), and garlic virus X (GarV-X) by polymerase chain reaction (PCR) (Gawande et al. 2015; Roylawar et al. 2019; Baranwal et al. 2011; Gieck et al. 2009). Leaf samples tested through RT-PCR were found positive for garlic viruses GarV-A, GarV-B, GarV-C, GarV-D, and GarV-X. Allexiviruses other than GarV-B had been previously reported in India and hence further tests were conducted to confirm GarV-B infection. RT-PCR using primers, CF 5’- ATGGGAGACAGGTCGCAA-3’ and CR5’- CTAAAATGTAAGCATGAGCGGT-3’ designed specific to the coat protein yielded a 735-bp amplicon from all five G-204 plants. The amplified product was purified using QIAquick PCR Purification Kit (Qiagen, Germany) and cloned in pJET1.2 vector (Thermo Scientific, Lithuania). Two clones containing the CP gene were bidirectionally sequenced, and a consensus sequence was submitted to GenBank (MN650206). BLASTn results indicated that this consensus sequence showed 97.96% nucleotide (KP657919.1) and 100% amino acid sequence (AKN19940.1) identity with the CP sequence of GarV-B isolate from Poland. The presence of GarV-B was confirmed by enzyme-linked immunosorbent assay (ELISA) using a double-antibody sandwich ELISA kit (Arsh Biotech, Delhi, India) as per the manufacturer’s protocol. An absorbance of reaction was read using a microplate reader at 405 nm. The mean OD values of negative and positive controls were 0.034 and 0.373, respectively. The OD values of five samples tested ranged from 0.210 to 0.296 indicating a positive reaction for GarV-B. To assess the presence of GarV-B in the available genetic stock, we tested 30 garlic germplasm accessions for GarV-B using RT-PCR. Out of these, 17 accessions were found positive for GarV-B. GarV-B has been reported from many countries (Gieck et al. 2009). This is the first report of GarV-B from India. Globally, allexiviruses are known for their adverse impact on garlic production (Oliveira et al. 2014). GarV-B together with other viruses can be a potential threat to garlic production in India. Further, detailed evaluations are needed to study the impact of GarV-B on garlic production in India.


Sign in / Sign up

Export Citation Format

Share Document