scholarly journals First Report of Stem Rot of Dracaena Caused by Aspergillus niger in Iran

2008 ◽  
Vol 9 (1) ◽  
pp. 48 ◽  
Author(s):  
Mehrdad Abbasi ◽  
Faezeh Aliabadi

Specimen plants of Dracaena sanderiana showing stem rot symptoms were collected from a local market in Tehran. Aspergillus niger was isolated from all diseased plants. Healthy greenhouse plants were inoculated and developed disease symptoms. The authors were able to isolate A. niger from all inoculated plants. This is believed to be the first report of A. nigercausing stem rot of D. sanderiana in Iran. Accepted for publication 26 November 2007. Published 12 February 2008.

Plant Disease ◽  
1999 ◽  
Vol 83 (9) ◽  
pp. 880-880
Author(s):  
S. P. Fernández-Pavía ◽  
M. Valenzuela-Vazquez

Lupinus havardii Wats. (Big Bend Bluebonnet), a plant native to Texas, has been tested extensively for greenhouse production as a cutflower crop (1). Disease symptoms were observed on L. havardii plants grown in Las Cruces, NM, during two consecutive years. Plants were grown in Metro Mix 200 and watered by an automatic irrigation system every 3 days. During the growing season, which extended from September through February, 6% of mature plants (10-week-old plants) became chlorotic, wilted, and died. The first symptoms were observed during December 1998, when greenhouse temperatures were from 10 to 13°C. During the rest of the growing season, from February to July, only one plant became diseased, during May 1999, and the plant died within 1 week after greenhouse temperatures reached 20 to 25°C. Diseased plants were examined, and root, crown, and stem rot were found. Pythium paroecandrum Drechs. (2) was isolated routinely from infected tissues. Koch's postulates were fulfilled after plants were inoculated with oospores and mycelia of P. paroecandrum. Inoculum was applied next to the crown of 6-week-old plants in the form of water-agar plugs and a suspension that contained P. paroecandrum oospores and mycelia. Plants were maintained at 20 to 25°C. After 10 days, symptoms were similar to those previously observed, and the pathogen was reisolated from necrotic lesions observed on stems and crowns. Disease developed slower on 6-week-old plants (inoculated) than on 10-week-old plants (naturally infected). This is the first report of P. paroecandrum on L. havardii. References: (1) W. A. Mackay and T. D. Davis. HortScience 33:348, 1998. (2) A. J. Van der Plaats-Niterink. Monograph of the genus Pythium. Studies Mycol. 21:1, 1981.


2001 ◽  
Vol 50 (6) ◽  
pp. 811-811 ◽  
Author(s):  
A. Nikandrow ◽  
R. L. Gilbert ◽  
D. A. Gunning ◽  
M. A. C. B. Lawler ◽  
K. D. Lindbeck ◽  
...  
Keyword(s):  
Stem Rot ◽  

Plant Disease ◽  
2006 ◽  
Vol 90 (7) ◽  
pp. 973-973 ◽  
Author(s):  
N. A. Al-Saady ◽  
A. M. Al-Subhi ◽  
A. Al-Nabhani ◽  
A. J. Khan

Chickpea (Cicer arietinum), locally known as “Dungo”, is grown for legume and animal feed mainly in the interior region of Oman. During February 2006, survey samples of chickpea leaves from plants showing yellows disease symptoms that included phyllody and little leaf were collected from the Nizwa Region (175 km south of Muscat). Total nucleic acid was extracted from asymptomatic and symptomatic chickpea leaves using a cetyltrimethylammoniumbromide method with modifications (3). All leaf samples from eight symptomatic plants consistently tested positive using a polymerase chain reaction assay (PCR) with phytoplasma universal primers (P1/P7) that amplify a 1.8-kb phytoplasma rDNA product and followed by nested PCR with R16F2n/R16R2 primers yielding a product of 1.2 kb (2). No PCR products were evident when DNA extracted from healthy plants was used as template. Restriction fragment length polymorphism analysis of nested PCR products by separate digestion with Tru9I, HaeIII, HpaII, AluI, TaqI, HhaI, and RsaI restriction enzymes revealed that a phytoplasma belonging to group 16SrII peanut witches'-broom group (2) was associated with chickpea phyllody and little leaf disease in Oman. Restriction profiles of chickpea phytoplasma were identical with those of alfalfa witches'-broom phytoplasma, a known subgroup 16SrII-B strain (3). To our knowledge, this is the first report of phytoplasma infecting chickpea crops in Oman. References: (1) A. J. Khan et al. Phytopathology, 92:1038, 2002. (2). I.-M. Lee et al. Int. J. Syst. Bacteriol. 48:1153, 1998 (3) M. A. Saghai-Maroof et al. Proc. Natl. Acad. Sci. USA. 81:8014, 1984.


Plant Disease ◽  
2018 ◽  
Vol 102 (1) ◽  
pp. 238-238 ◽  
Author(s):  
R. R. McNally ◽  
R. D. Curland ◽  
B. T. Webster ◽  
A. P. Robinson ◽  
C. A. Ishimaru
Keyword(s):  
Stem Rot ◽  

Plant Disease ◽  
2019 ◽  
Vol 103 (1) ◽  
pp. 151
Author(s):  
L. Yang ◽  
X. H. Lu ◽  
Y. L. Jing ◽  
S. D. Li ◽  
B. M. Wu

Plant Disease ◽  
2005 ◽  
Vol 89 (6) ◽  
pp. 685-685 ◽  
Author(s):  
S. F. Shamoun ◽  
S. Zhao

Salal (Gaultheria shallon Pursh.) is an ericaceous, evergreen, and rhizomatous shrub that competes for nutrients and moisture with young conifers in low elevation, coastal British Columbia (BC). A survey was conducted on southern Vancouver Island, BC during the summer of 1999 to find fungal pathogens of salal that might serve as biocontrol organisms (3). Phoma exigua Desmaz. (isolate PFC2705) near Parksville, BC proved to be pathogenic on salal. Identification of PFC2705 at the Centraalbureau voor Schimmelcultures was based on morphology and ITS sequences (GenBank Accession No. AY927784). Pathogenicity was determined with 24 salal seedlings (3-month-old) by inoculating with mycelial suspensions (20% v/v) or conidial suspensions (1 × 106 conidia per ml in 0.5% potato dextrose broth). Inoculated seedlings were placed in plastic bags and incubated in a greenhouse (16 to 23°C with natural light). Plastic bags were removed after 2 days. Initial disease symptoms were observed 2 days after inoculation. Brown, sunken lesions appeared on the surface of young leaves and stems and extended quickly. All seedlings were killed within 14 days. Twelve control plants showed no disease symptoms. With diseased salal leaves incubated at 23°C with 12-h fluorescent light/dark and 100% relative humidity, pycnidia appeared on leaf surfaces within 5 days. Conidia were hyaline, ellipsoid, one-celled, sometimes two- to three-celled, 2.5 to 3.8 × 5 to 12.5 μm, with a rounded base; the colony was gray or dark gray on potato dextrose agar after 5 to 7 days. Reisolation from the inoculated diseased leaves produced a mycelial colony that shared the same growth and morphological characteristics as the initial isolate. Phyllosticta gaultheriae Ellis & Everh., a widely reported foliar pathogen of salal, is distinct morphologically from P. exigua (1). To our knowledge, this is the first report of P. exigua as a pathogen of salal in Canada (2). A voucher specimen has been deposited at the Pacific Forestry Center Herbarium (DAVFP No. 28735). References: (1) J. Bissett and S. J. Darbyshire. No. 275 in: Fungi Canadenses, 1984. (2) D. F. Farr et al. Fungi on Plants and Plant Products in the United States. The American Phytopathological Society. St. Paul. MN, 1989. (3) S. F. Shamoun et al. Can. J. Plant Pathol. 22:192, 2000.


Plant Disease ◽  
2008 ◽  
Vol 92 (1) ◽  
pp. 173-173 ◽  
Author(s):  
S. G. Bobev ◽  
L. A. Castlebury ◽  
A. Y. Rossman

In the winter of 2007, severe damage was observed on numerous indoor potted plants of Dracaena sanderiana hort. Sander ex Mast. (“lucky bamboo”) in Plovdiv, Bulgaria, which were imported from a country of unknown origin. These plants were already in the retail distribution stream. Initially, the internodes of infected stems appeared pale green with yellowish lesions. An upward spreading necrosis led to a weakness of the stems with wilt and death of the plants occurring within 2 weeks. Eventually, entire stems were covered with numerous, black, globose-to-ellipsoid acervuli with sparse, black setae. The fungus was aseptically isolated from stem lesions on potato dextrose agar (PDA) on which it produced fast-growing, pale pink colonies. On the plant and in culture, the conidia were hyaline, broadly clavate to cylindrical, occasionally slightly curved, and measured 20 to 34 × 6.7 to 10.0 μm (average 28 × 8.5 μm). On the basis of the symptoms on the plant and morphological, cultural, and molecular characteristics, the fungus was identified as Colletotrichum dracaenophilum D.F. Farr & M.E. Palm (1). Pathogenicity of the fungus was confirmed by artificial inoculation of healthy plants of D. sanderiana (three replicates). Stems were inoculated by inserting small mycelial plugs from 7-day-old PDA cultures into wounds that were subsequently covered with Parafilm strips. After 2 weeks, pale green lesions started developing on all inoculated plants and the fungus was successfully reisolated. No symptoms were found around the pure agar control wounds. The specimen from Bulgaria was deposited in the U.S. National Fungus Collections (BPI 877337) with the derived culture deposited as CBS 121453. In addition, the internal transcribed spacer region of the nrDNA of this isolate was sequenced and deposited as GenBank Accession No. EU003533. To our knowledge, this is the first report of C. dracaenophilum on potted plants outside of China and is the first report of this species in Bulgaria. Reference: (1) D. F. Farr et al. Mycol. Res. 110:1395, 2006.


Plant Disease ◽  
2010 ◽  
Vol 94 (9) ◽  
pp. 1171-1171 ◽  
Author(s):  
D. X. Zeng ◽  
X. L. Wu ◽  
Y. H. Li

Peperomia tetraphylla, an evergreen herb, is becoming increasingly popular as a potted ornamental plant in southern China. In the summer of 2008, in some commercial flower nurseries in Shenzhen, Guangdong Province, P. tetraphylla showed extensive black stem and root rot, with leaves dropping from the rotten stem. Small pieces (approximately 3 mm2) of stems and leaves were excised from the margins of the black lesions, surface disinfected for 30 s to 1 min in 0.1% HgCl2, plated onto potato dextrose agar (PDA), and incubated at 25°C in the dark. All the plated samples yielded Phytophthora, and microscopic examination of pure cultures grown on PDA plates showed arachnoid colonies with abundant aerial mycelium, chlamydospores, and a few sporangia. Numerous sporangia were formed in sterile soil extract. Sporangia were ovoid or obpyriform, noncaducous, with prominent solitary papillae, and measured 31 to 52 μm (average 38 μm) × 21 to 34 μm (average 27 μm). Chlamydospores were spherical and 21 to 34 μm in diameter (average 28 μm). The internal transcribed spacer (ITS) region of rDNA of a single isolate was amplified using primers ITS4/ITS5 and sequenced (2). The ITS sequence, when submitted for a BLAST search in the NCBI database, showed 100% homology with the sequences of two reference isolates of Phytophthora nicotianae (Accession Nos. AY833526 and EU433396) and the consensus ITS sequence was deposited in the NCBI as Accession No. GQ499373. The isolate was identified as Phytophthora nicotianae on the basis of morphological and molecular characteristics (1). Pathogenicity of the isolate was confirmed by inoculating 1-year-old plants of P. tetraphylla growing in pots. The isolate was grown for 7 days on PDA plates and mycelial plugs, 5 mm in diameter and taken from the advancing margins of the colonies, were buried approximately 1 cm deep near the base of the stem in such a way that the mycelium on the plugs was in contact with the surface of the stem, which had been wiped earlier with 70% ethanol and gently wounded with a needle. Plants treated the same way but inoculated with sterile PDA plugs served as control plants. Three plants in each pot were inoculated and there were five replications each for the treatment and the control. All plants were kept in a greenhouse at 22 to 32°C. After 6 to 7 days, the inoculated plants showed black lesions around the mycelial plugs; symptoms of root and stem rot developed rapidly thereafter and the plants collapsed within 2 weeks. All symptoms on the inoculated plants were identical to those observed in naturally diseased plants, whereas the control plants remained healthy. The same fungus was consistently reisolated from the inoculated plants. To our knowledge, this is the first report of Phytophthora nicotianae on P. tetraphylla in China. References: (1) D. C. Erwin and O. K. Ribeiro. Phytophthora Diseases Worldwide. The American Phytopathological Society, St. Paul, MN, 1996. (2) J. B. Ristaino et al. Appl. Environ. Microbiol. 64:948, 1998.


Plant Disease ◽  
2019 ◽  
Vol 103 (10) ◽  
pp. 2676 ◽  
Author(s):  
A. K. Gupta ◽  
R. Choudhary ◽  
B. M. Bashyal ◽  
K. Rawat ◽  
D. Singh ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document