scholarly journals Quantitative Trait Loci from Two Genotypes of Oat (Avena sativa) Conditioning Resistance to Puccinia coronata

2015 ◽  
Vol 105 (2) ◽  
pp. 239-245 ◽  
Author(s):  
Ebrahiem M. Babiker ◽  
Tyler C. Gordon ◽  
Eric W. Jackson ◽  
Shiaoman Chao ◽  
Stephen A. Harrison ◽  
...  

Developing oat cultivars with partial resistance to crown rust would be beneficial and cost-effective for disease management. Two recombinant inbred-line populations were generated by crossing the susceptible cultivar Provena with two partially resistant sources, CDC Boyer and breeding line 94197A1-9-2-2-2-5. A third mapping population was generated by crossing the partially resistant sources to validate the quantitative trait locus (QTL) results. The three populations were evaluated for crown rust severity in the field at Louisiana State University (LSU) in 2009 and 2010 and at the Cereal Disease Laboratory (CDL) in St. Paul, MN, in 2009, 2010, and 2011. An iSelect platform assay containing 5,744 oat single nucleotide polymorphisms was used to genotype the populations. From the 2009 CDL test, linkage analyses revealed two QTLs for partial resistance in the Provena/CDC Boyer population on chromosome 19A. One of the 19A QTLs was also detected in the 2009 LSU test. Another QTL was detected on chromosome 12D in the CDL 2009 test. In the Provena/94197A1-9-2-2-2-5 population, only one QTL was detected, on chromosome 13A, in the CDL 2011 test. The 13A QTL from the Provena/94197A1-9-2-2-2-5 population was validated in the CDC Boyer/94197A1-9-2-2-2-5 population in the CDL 2010 and 2011 tests. Comparative analysis of the significant marker sequences with the rice genome database revealed 15 candidate genes for disease resistance on chromosomes 4 and 6 of rice. These genes could be potential targets for cloning from the two resistant parents.

2014 ◽  
Vol 14 (1) ◽  
Author(s):  
Yang Lin ◽  
Belaghihalli N Gnanesh ◽  
James Chong ◽  
Gang Chen ◽  
Aaron D Beattie ◽  
...  

2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Xingyi Wang ◽  
Hui Liu ◽  
Kadambot H. M. Siddique ◽  
Guijun Yan

Abstract Background Pre-harvest sprouting (PHS) in wheat can cause severe damage to both grain yield and quality. Resistance to PHS is a quantitative trait controlled by many genes located across all 21 wheat chromosomes. The study targeted a large-effect quantitative trait locus (QTL) QPhs.ccsu-3A.1 for PHS resistance using several sets previously developed near-isogenic lines (NILs). Two pairs of NILs with highly significant phenotypic differences between the isolines were examined by RNA sequencing for their transcriptomic profiles on developing seeds at 15, 25 and 35 days after pollination (DAP) to identify candidate genes underlying the QTL and elucidate gene effects on PHS resistance. At each DAP, differentially expressed genes (DEGs) between the isolines were investigated. Results Gene ontology and KEGG pathway enrichment analyses of key DEGs suggested that six candidate genes underlie QPhs.ccsu-3A.1 responsible for PHS resistance in wheat. Candidate gene expression was further validated by quantitative RT-PCR. Within the targeted QTL interval, 16 genetic variants including five single nucleotide polymorphisms (SNPs) and 11 indels showed consistent polymorphism between resistant and susceptible isolines. Conclusions The targeted QTL is confirmed to harbor core genes related to hormone signaling pathways that can be exploited as a key genomic region for marker-assisted selection. The candidate genes and SNP/indel markers detected in this study are valuable resources for understanding the mechanism of PHS resistance and for marker-assisted breeding of the trait in wheat.


Genome ◽  
2003 ◽  
Vol 46 (2) ◽  
pp. 224-234 ◽  
Author(s):  
C E Durel ◽  
L Parisi ◽  
F Laurens ◽  
W E Van de Weg ◽  
R Liebhard ◽  
...  

Scab, caused by the fungus Venturia inaequalis, is one of the most important diseases of apple (Malus × domestica). The major resistance gene, Vf, has been widely used in apple breeding programs, but two new races of the fungus (races 6 and 7) are able to overcome this gene. A mapped F1 progeny derived from a cross between the cultivars Prima and Fiesta has been inoculated with two monoconidial strains of race 6. These strains originated from sporulating leaves of 'Prima' and a descendant of 'Prima' that were grown in an orchard in northern Germany. 'Prima' carries the Vf resistance gene, whereas 'Fiesta' lacks Vf. A large variation in resistance and (or) susceptibility was observed among the individuals of the progeny. Several quantitative trait loci (QTLs) for resistance were identified that mapped on four genomic regions. One of them was located in the very close vicinity of the Vf resistance gene on linkage group LG-1 of the 'Prima' genetic map. This QTL is isolate specific because it was only detected with one of the two isolates. Two out of the three other genomic regions were identified with both isolates (LG-11 and LG-17). On LG-11, a QTL effect was detected in both parents. The genetic dissection of this QTL indicated a favourable intra-locus interaction between some parental alleles.Key words: Malus × domestica, partial resistance, Venturia inaequalis, resistance breakdown, quantitative trait locus.


Blood ◽  
2008 ◽  
Vol 112 (4) ◽  
pp. 1434-1442 ◽  
Author(s):  
Ryan K. Funk ◽  
Taylor J. Maxwell ◽  
Masayo Izumi ◽  
Deepa Edwin ◽  
Friederike Kreisel ◽  
...  

Abstract Therapy-related acute myelogenous leukemia (t-AML) is an important late adverse effect of alkylator chemotherapy. Susceptibility to t-AML has a genetic component, yet specific genetic variants that influence susceptibility are poorly understood. We analyzed an F2 intercross (n = 282 mice) between mouse strains resistant or susceptible to t-AML induced by the alkylator ethyl-N-nitrosourea (ENU) to identify genes that regulate t-AML susceptibility. Each mouse carried the hCG-PML/RARA transgene, a well-characterized initiator of myeloid leukemia. In the absence of ENU treatment, transgenic F2 mice developed leukemia with higher incidence (79.4% vs 12.5%) and at earlier time points (108 days vs 234 days) than mice in the resistant background. ENU treatment of F2 mice further increased incidence (90.4%) and shortened median survival (171 vs 254 days). We genotyped F2 mice at 384 informative single nucleotide polymorphisms across the genome and performed quantitative trait locus (QTL) analysis. Thirteen QTLs significantly associated with leukemia-free survival, spleen weight, or white blood cell count were identified on 8 chromosomes. These results suggest that susceptibility to ENU-induced leukemia in mice is a complex trait governed by genes at multiple loci. Improved understanding of genetic risk factors should lead to tailored treatment regimens that reduce risk for patients predisposed to t-AML.


2005 ◽  
Vol 112 (1) ◽  
pp. 195-197 ◽  
Author(s):  
V. A. Portyanko ◽  
G. Chen ◽  
H. W. Rines ◽  
R. L. Phillips ◽  
K. J. Leonard ◽  
...  

2005 ◽  
Vol 111 (2) ◽  
pp. 313-324 ◽  
Author(s):  
V. A. Portyanko ◽  
G. Chen ◽  
H. W. Rines ◽  
R. L. Phillips ◽  
K. J. Leonard ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document