scholarly journals Role of Melatonin in Arbuscular Mycorrhizal Fungi-Induced Resistance to Fusarium Wilt in Cucumber

2020 ◽  
Vol 110 (5) ◽  
pp. 999-1009 ◽  
Author(s):  
Golam Jalal Ahammed ◽  
Qi Mao ◽  
Yaru Yan ◽  
Meijuan Wu ◽  
Yaqi Wang ◽  
...  

Melatonin is a multifunctional molecule that confers tolerance to a number of biotic and abiotic stresses in plants. However, the role of melatonin in plant response to Fusarium oxysporum and the interaction with arbuscular mycorrhizal fungi (AMF) remain unclear. Here we show that exogenous melatonin application promoted the AMF colonization rate in cucumber roots, which potentially suppressed Fusarium wilt as evidenced by a decreased disease index and an increased control effect. Leaf gas exchange analysis revealed that Fusarium inoculation significantly decreased the net photosynthetic rate (Pn), stomatal conductance (Gs), intercellular CO2 concentrations (Ci), and transpiration rate (Tr). Intriguingly, either melatonin application or AMF inoculation significantly increased the Pn, Gs, Tr, and dry biomass, and their combined treatment showed a more profound effect under Fusarium stress. Further analysis showed that Fusarium induced oxidative stress as evidenced by increased lipid peroxidation and electrolyte leakage. Conversely, either melatonin or AMF drastically attenuated the levels of malondialdehyde, H2O2, and electrolyte leakage in Fusarium-inoculated plants, and their combined treatment caused a further decrease. Fusarium inoculation decreased the activity and transcripts of superoxide dismutase and ascorbate peroxidase, and the content of glutathione and proline. Besides, the activity and transcripts of peroxidase and catalase, the content of phenols and flavonoids increased after Fusarium infection. Importantly, melatonin and/or AMF significantly increased those parameters with the greatest effect with their combined treatment under Fusarium stress. Our results suggest that a positive collaboration between melatonin and AMF enhances resistance to Fusarium wilt in cucumber plants.

2017 ◽  
Vol 12 (5) ◽  
pp. 159
Author(s):  
Marlina Puspita Sari ◽  
Bambang Hadisutrisno ◽  
Suryanti Suryanti

Arbuscular mycorrhizal fungi (AMF) is known to improve the growth of shallot (Allium cepa var. aggregatum) and strengthen the resistance of plants toward disease infection.  This research aimed to find out the roles of AMF in suppressing the development of purple blotch disease caused by  Alternaria sp. on shallot in Caturtunggal, Sleman, Yogyakarta.  Inoculation of AMF either on fertilization of N, P, K or without fertilization treatment resulted on higher plant height and number of leaves compared to those without AMF inoculation. The plant inoculated with AMF had lower purple blotch disease intensity and disease progression than control and fungicide treatment. The result showed that AMF, in addition to act as the bio-fertilizer, is a potential to be a biocontrol agent.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Ziheng Song ◽  
Yinli Bi ◽  
Jian Zhang ◽  
Yunli Gong ◽  
Huihui Yang

Abstract It is urgent to restore the ecological function in open-pit mining areas on grassland in Eastern China. The open-pit mines have abundant of mining associated clay, which is desirable for using as a soil source for ecological restoration. The mining associated clay in Hulunbuir district, Inner Mongolia was selected and mixed with a sandy soil at a ratio of 1:1 (S_C soil). Also, effects of arbuscular mycorrhizal fungi (AMF) inoculation on soil functions were studied. The aboveground and underground biomass of maize in S_C soil was 1.49 and 2.41 times higher than that of clay soil, respectively. In the topsoil and S_C soil, the growth hormone (IAA) and cytokinin (CTK) levels of maize were higher than that of clay, while abscission acid (ABA) levels were lower. The inoculation with AMF could significantly improve the biomass of maize and enhance the stress resistance of plants. Through structural equation model (SEM) analyses, it was found that the soil type and AMF inoculation had the most direct impact on maize growth and biomass content. These finds extend our knowledge regarding a low-cost method for physical and biological improvement of mining associated clay, and to provide theoretical support for large-scale application in the future.


2016 ◽  
Vol 2016 ◽  
pp. 1-11 ◽  
Author(s):  
Abeer Hashem ◽  
E. F. Abd_Allah ◽  
A. A. Alqarawi ◽  
A. A. Al-Huqail ◽  
M. A. Shah

The role of soil microbiota in plant stress management, though speculated a lot, is still far from being completely understood. We conducted a greenhouse experiment to examine synergistic impact of plant growth promoting rhizobacterium,Bacillus subtilis(BERA 71), and arbuscular mycorrhizal fungi (AMF) (Claroideoglomus etunicatum;Rhizophagus intraradices; andFunneliformis mosseae) to induce acquired systemic resistance in Talh tree (Acacia gerrardiiBenth.) against adverse impact of salt stress. Compared to the control, the BERA 71 treatment significantly enhanced root colonization intensity by AMF, in both presence and absence of salt. We also found positive synergistic interaction betweenB.subtilisand AMFvis-a-visimprovement in the nutritional value in terms of increase in total lipids, phenols, and fiber content. The AMF and BERA 71 inoculated plants showed increased content of osmoprotectants such as glycine, betaine, and proline, though lipid peroxidation was reduced probably as a mechanism of salt tolerance. Furthermore, the application of bioinoculants to Talh tree turned out to be potentially beneficial in ameliorating the deleterious impact of salinity on plant metabolism, probably by modulating the osmoregulatory system (glycine betaine, proline, and phenols) and antioxidant enzymes system (SOD, CAT, POD, GR, APX, DHAR, MDAHR, and GSNOR).


2019 ◽  
Vol 32 (2) ◽  
pp. 370-380
Author(s):  
EDUARDO MENDONÇA PINHEIRO ◽  
CAMILA PINHEIRO NOBRE ◽  
THAYANNA VIEIRA COSTA ◽  
ORLANDO CARLOS HUERTAS TAVARES ◽  
JOSÉ RIBAMAR GUSMÃO ARAUJO

ABSTRACT The use of beneficial microorganisms such as arbuscular mycorrhizal fungi (AMF) may favor both the growth phase and the stabilization of the seedlings after transplantation. The aim of this study was to evaluate the effect of inoculation of different AMF species on the development of Barbados cherry seedlings from herbaceous and semi-hardwood cuttings. Softwood and semi-hardwood cuttings, previously rooted, were planted in 500 ml tubes filled with Plantmax® substrate and inoculated with three species of mycorrhizal fungi (Gigaspora margarita - Gimarg, Claroideoglomus etunicatum - Claetun and Glomus clarum - Glclar) isolated and combined (Gimarg + Claetun, Gimarg + Glclar, Claetun + Glclar and Gimarg + Claetun + Glclar). The statistical design was completely randomized in factorial scheme 2 x 8 (two types of cuttings and eight types of inoculation, including control without AMF inoculation) with ten replications. The seedlings were kept in a greenhouse for 100 days and height was measured every 15 days to determine the absolute and relative growth rate (AGR and RGR). At the end of the experiment the seedlings were sacrificed and determined height, fresh and dry shoot mass and root and mycorrhizal colonization rate. The results indicate potential for production of Malpighia emarginata D.C. seedlings inoculated with AMF with tendency to reduce the time for transplanting. The Gimarg + Claetun combination promoted higher rates of absolute growth and height of seedlings from herbaceous cuttings. The species Glomus clarum, isolated or associated with C. etunicatum, promoted higher colonization rates in herbaceous and semi-hardwood seedlings, respectively.


Sign in / Sign up

Export Citation Format

Share Document