Heterothallism in the Apple Powdery Mildew Fungus, Podosphaera leucotricha

1974 ◽  
Vol 64 (2) ◽  
pp. 246 ◽  
Author(s):  
Duane L. Coyier
2017 ◽  
Vol 38 (SI 2 - 6th Conf EFPP 2002) ◽  
pp. 425-428
Author(s):  
E. Rakhimova

The development and ultrastructure feature of secondary hyphae of Podosphaera leucotricha were studied using light and electron microscopy. The percentage of development and length of secondary hyphae, differed in compatible and incompatible combinations. In compatible host-parasite combinations, hyphal cells of powdery mildew fungus contained a full complement of fungal organelles. There were differences of hyphal ultrastructure in compatible and incompatible host-parasite combinations, the main one was the appearance of dense material inside the nucleus, in the cytoplasm, and a few mitochondria.


Plant Disease ◽  
2008 ◽  
Vol 92 (1) ◽  
pp. 176-176 ◽  
Author(s):  
L. Vajna ◽  
L. Kiss

Callery pear (Pyrus calleryana Decne.) is native to Asia and its varieties are planted as ornamentals in urban areas worldwide. It is also used as a source of resistance to fireblight in some breeding programs. In April 2007, symptoms of powdery mildew infection were observed on the foliage of almost every P. calleryana cv. Chanticleer tree planted along a 1.5-km road in Budapest, Hungary. These trees were planted 5 to 6 years ago and were the first callery pears used as ornamentals in Hungary. Powdery mildew infections were also detected on P. calleryana trees planted in other parts of the city. White powdery mildew mycelium appeared on the lower and sometimes upper leaf surfaces, especially on young shoots, and caused chlorotic spots on the upper leaf surfaces and severe distortions of leaves. The spread of the infection was monitored between April and August of 2007 in several sample sites. More than 100 trees that were examined became heavily infected by May 2007. Powdery mildew conidiophores were typical of the genus Oidium subgen. Fibroidium, the anamorph of the teleomorph genus Podosphaera (2). Conidia developed in chains, contained fibrosin bodies, germinated at one of their ends with germ tubes terminating in unlobed appressoria, and measured 16 to 27 × 10 to 15 μm. Hyphal appressoria were nipple shaped or inconspicuous. The teleomorph was not found. To precisely identify the pathogen, DNA was extracted from conidia collected with a sterile brush from a single leaf using a Qiagen DNeasy Plant Kit (Hilden, Germany), and the internal transcribed spacer (ITS) sequence of the ribosomal DNA was amplified and determined as described by Szentiványi et al. (3). The ITS sequence, deposited in GenBank under Accession No. EU148597, was identical to those determined in Podosphaera leucotricha (Ell. & Ev.) Salmon collected from apple in Australia (GenBank Accession No. AF073353) and Canada (GenBank Accession No. AY157844) and also from pear in Canada (GenBank Accession No. AY157845). Thus, the pathogen was identified as Podosphaera leucotricha on the basis of the host genus, morphology of the anamorph, and ITS sequence. Specimens were deposited under Accession No. BPI878262 at the U.S. National Fungus Collection. To our knowledge, Podosphaera leucotricha has not been reported on P. calleryana in any parts of the world so far. An Oidium sp. infecting this plant in Australia was listed by Amano (1), but the exact identity of that fungus is not known. Thus, this is the first report of an identified powdery mildew fungus on P. calleryana. References: (1) K. Amano. Host Range and Geographical Distribution of the Powdery Mildew Fungi. Japan Scientific Societies Press, Tokyo, 1986. (2) U. Braun et al. Pages 13-55 in: The Powdery Mildews: A Comprehensive Treatise. R. R Bélanger et al., eds. American Phytopathological Society, St Paul, MN, 2002. (3) O. Szentiványi et al. Mycol. Res. 109:429, 2005.


Plant Disease ◽  
2011 ◽  
Vol 95 (6) ◽  
pp. 719-724 ◽  
Author(s):  
Tünde Jankovics ◽  
Nenad Dolovac ◽  
Aleksandra Bulajić ◽  
Branka Krstić ◽  
Thierry Pascal ◽  
...  

Peach rusty spot, an economically important disease of peach (Prunus persica var. persica), appears as necrotic spots on fruit. The etiology of the disease is still not well understood, although it has long been suspected that the causal agent is the apple powdery mildew pathogen, Podosphaera leucotricha. This work confirmed this hypothesis based on cross-inoculation experiments and analysis of rDNA internal transcribed spacer sequences polymerase chain reaction amplified from rusty spot and peach powdery mildew lesions. Cross-inoculations of apple and peach leaves with P. leucotricha and P. pannosa, the causal agent of peach powdery mildew, showed that (i) young peach fruit, up to 5 cm in diameter, developed symptoms typical of rusty spot following inoculation with P. leucotricha; (ii) leaves of ‘Jonagold’ apple seedlings developed powdery mildew infections when inoculated by touching young rusty spot lesions to their surfaces; (iii) P. leucotricha sporulated on young peach fruit up to 5 cm in diameter; and (iv) peach leaves and young shoots were not susceptible to P. leucotricha, whereas P. pannosa infected all the green parts of peach. A field experiment revealed that there was only a 2- to 3-week period of time during early peach fruit development when the epidermis was susceptible to P. leucotricha. An outcome of this study is that now a clear distinction can be made between the symptoms caused by P. pannosa and P. leucotricha on peach.


Genetics ◽  
2020 ◽  
Vol 217 (2) ◽  
Author(s):  
Antony V E Chapman ◽  
Matthew Hunt ◽  
Priyanka Surana ◽  
Valeria Velásquez-Zapata ◽  
Weihui Xu ◽  
...  

Abstract Barley (Hordeum vulgare L.) Mla (Mildew resistance locus a) and its nucleotide-binding, leucine-rich-repeat receptor (NLR) orthologs protect many cereal crops from diseases caused by fungal pathogens. However, large segments of the Mla pathway and its mechanisms remain unknown. To further characterize the molecular interactions required for NLR-based immunity, we used fast-neutron mutagenesis to screen for plants compromised in MLA-mediated response to the powdery mildew fungus, Blumeria graminis f. sp. hordei. One variant, m11526, contained a novel mutation, designated rar3 (required for Mla6 resistance3), that abolishes race-specific resistance conditioned by the Mla6, Mla7, and Mla12 alleles, but does not compromise immunity mediated by Mla1, Mla9, Mla10, and Mla13. This is analogous to, but unique from, the differential requirement of Mla alleles for the co-chaperone Rar1 (required for Mla12 resistance1). We used bulked-segregant-exome capture and fine mapping to delineate the causal mutation to an in-frame Lys-Leu deletion within the SGS domain of SGT1 (Suppressor of G-two allele of Skp1, Sgt1ΔKL308–309), the structural region that interacts with MLA proteins. In nature, mutations to Sgt1 usually cause lethal phenotypes, but here we pinpoint a unique modification that delineates its requirement for some disease resistances, while unaffecting others as well as normal cell processes. Moreover, the data indicate that the requirement of SGT1 for resistance signaling by NLRs can be delimited to single sites on the protein. Further study could distinguish the regions by which pathogen effectors and host proteins interact with SGT1, facilitating precise editing of effector incompatible variants.


Nature ◽  
1966 ◽  
Vol 209 (5026) ◽  
pp. 938-938 ◽  
Author(s):  
G. J. M. A. GORTER

Plant Disease ◽  
2009 ◽  
Vol 93 (8) ◽  
pp. 797-803 ◽  
Author(s):  
Renuka N. Attanayake ◽  
Dean A. Glawe ◽  
Frank M. Dugan ◽  
Weidong Chen

The taxonomy of the powdery mildew fungus infecting lentil in the Pacific Northwest (PNW) of the United States was investigated on the basis of morphology and rDNA internal transcribed spacer (ITS) sequences. Anamorphic characters were in close agreement with descriptions of Erysiphe trifolii. However, teleomorphs formed chasmothecial appendages with highly branched apices, whereas E. trifolii has been described as producing flexuous or sometimes loosely branched appendages. Branched appendages have been described in Erysiphe diffusa, a fungus reported from species of Lens, Glycine, and Sophora, raising the possibility that the PNW fungus could be E. diffusa. Examination of morphological characters of an authentic specimen of E. trifolii from Austria determined that it included chasmothecial appendages resembling those seen in PNW specimens. Furthermore, ITS sequences from five powdery mildew samples collected from lentils in PNW greenhouses and fields from 2006 to 2008 were identical to one another, and exhibited higher similarity to sequences of E. trifolii (99%) than to those of any other Erysiphe spp. available in GenBank. Parsimony analysis grouped the lentil powdery mildew into a clade with Erysiphe baeumleri, E. trifolii, and E. trifolii–like Oidium sp., but indicated a more distant relationship to E. diffusa. In greenhouse inoculation studies, the lentil powdery mildew fungus did not infect soybean genotypes known to be susceptible to E. diffusa. The pathogenicity of E. trifolii on lentil was confirmed using modified Koch's postulates. This is the first report of E. trifolii infecting lentil. E. diffusa and E. trifolii have different host ranges, so the discovery of E. trifolii on lentil has implications both for determining species of powdery mildews on cool-season grain legumes, and in disease management.


Author(s):  
J. N. Kapoor

Abstract A description is provided for Podosphaera leucotricha. Information is included on the disease caused by the organism, its transmission, geographical distribution, and hosts. HOSTS: On Malus spp., chiefly on M. pumila (apple), peach (Prunus persica), quince (Cydonia ualgaris) and Photinia spp. also attacked (Hirata, 1966). Also reported on almond fruit (43, 2544). DISEASE: Powdery mildew of apple. GEOGRAPHICAL DISTRIBUTION: Africa (? Kenya, Rhodaia, South Africa, Tanzania); Asia (China, India, Israel, Japan, U.S.S.R.); Australia and New Zealand, Europe (widely distributed) North America (Canada and U.S.A.); South America (Argentina, Brazil, Chile, Colombia, Peru). (CMI map 118). TRANSMISSION: Overwinters on host as dormant mycdium in blossom buds. The role of deistothecia in overwintering is doubtful. Spread by wind-borne conidia (Anderson, 1956).


Sign in / Sign up

Export Citation Format

Share Document